17.1 Torsion of Closed Section Beams 511ComparingFigs.17.5and17.7,itcanbeseenthattheformofthewarpingdistributionisthesame
butthatinthelattercasethecompletedistributionhasbeendisplacedaxially.Theactualvalueofthe
warpingattheoriginforsisfoundusingEq.(16.26).
Thus,
w 0 =2
2 (ata+btb)⎛
⎝
∫a0w′ 12 tads 1 +∫b0w′ 23 tbds 2⎞
⎠ (vii)SubstitutinginEq.(vii)forw′ 12 andw′ 23 fromEqs.(iv)and(vi),respectively,andevaluatinggive
w 0 =−T
8 abG(
b
tb−
a
ta)
(viii)Subtractingthisvaluefromthevaluesofw′ 1 (= 0 )andw′ 2 (=−T(b/tb−a/ta)/ 4 abG),wehave
w 1 =T
8 abG(
b
tb−
a
ta)
, w 2 =−T
8 abG(
b
tb−
a
ta)
asbefore.Notethatsettingw 0 =0inEq.(i)impliesthatw 0 ,theactualvalueofwarpingattheorigin
fors,hasbeenaddedtoallwarpingdisplacements.Thisvaluemustthereforebesubtractedfromthe
calculated warping displacements (i.e., those based on an arbitrary choice of origin) to obtain true
values.
Itisinstructiveatthisstagetoexaminethemechanicsofwarpingtoseehowitarises.Supposethat
eachendoftherectangularsectionbeamofExample17.2rotatesthroughoppositeanglesθ,givinga
totalangleoftwist2θalongitslengthL.Thecorner1atoneendofthebeamisdisplacedbyamounts
aθ/2 verticallyandbθ/2horizontally,asshowninFig.17.8.Considernowthedisplacementsofthe
webandcoverofthebeamduetorotation.FromFigs.17.8and17.9(a)and(b),itcanbeseenthatthe
anglesofrotationofthewebandthecoverare,respectively,
φb=(aθ/ 2 )/(L/ 2 )=aθ/Land
φa=(bθ/ 2 )/(L/ 2 )=bθ/LTheaxialdisplacementsofthecorner1inthewebandcoverarethenb
2aθ
L,
a
2bθ
Lrespectively,asshowninFig.17.9(a)and(b).Inadditiontodisplacementsproducedbytwisting,the
websandcoversaresubjectedtoshearstrainsγbandγacorrespondingtotheshearstresssystemgiven
byEq.(17.1).Duetoγb,theaxialdisplacementofcorner1inthewebisγbb/2inthepositivezdirection,
whileinthecoverthedisplacementisγaa/2inthenegativezdirection.Notethattheshearstrainsγb