17.1 Torsion of Closed Section Beams 511
ComparingFigs.17.5and17.7,itcanbeseenthattheformofthewarpingdistributionisthesame
butthatinthelattercasethecompletedistributionhasbeendisplacedaxially.Theactualvalueofthe
warpingattheoriginforsisfoundusingEq.(16.26).
Thus,
w 0 =
2
2 (ata+btb)
⎛
⎝
∫a
0
w′ 12 tads 1 +
∫b
0
w′ 23 tbds 2
⎞
⎠ (vii)
SubstitutinginEq.(vii)forw′ 12 andw′ 23 fromEqs.(iv)and(vi),respectively,andevaluatinggive
w 0 =−
T
8 abG
(
b
tb
−
a
ta
)
(viii)
Subtractingthisvaluefromthevaluesofw′ 1 (= 0 )andw′ 2 (=−T(b/tb−a/ta)/ 4 abG),wehave
w 1 =
T
8 abG
(
b
tb
−
a
ta
)
, w 2 =−
T
8 abG
(
b
tb
−
a
ta
)
asbefore.Notethatsettingw 0 =0inEq.(i)impliesthatw 0 ,theactualvalueofwarpingattheorigin
fors,hasbeenaddedtoallwarpingdisplacements.Thisvaluemustthereforebesubtractedfromthe
calculated warping displacements (i.e., those based on an arbitrary choice of origin) to obtain true
values.
Itisinstructiveatthisstagetoexaminethemechanicsofwarpingtoseehowitarises.Supposethat
eachendoftherectangularsectionbeamofExample17.2rotatesthroughoppositeanglesθ,givinga
totalangleoftwist2θalongitslengthL.Thecorner1atoneendofthebeamisdisplacedbyamounts
aθ/2 verticallyandbθ/2horizontally,asshowninFig.17.8.Considernowthedisplacementsofthe
webandcoverofthebeamduetorotation.FromFigs.17.8and17.9(a)and(b),itcanbeseenthatthe
anglesofrotationofthewebandthecoverare,respectively,
φb=(aθ/ 2 )/(L/ 2 )=aθ/L
and
φa=(bθ/ 2 )/(L/ 2 )=bθ/L
Theaxialdisplacementsofthecorner1inthewebandcoverarethen
b
2
aθ
L
,
a
2
bθ
L
respectively,asshowninFig.17.9(a)and(b).Inadditiontodisplacementsproducedbytwisting,the
websandcoversaresubjectedtoshearstrainsγbandγacorrespondingtotheshearstresssystemgiven
byEq.(17.1).Duetoγb,theaxialdisplacementofcorner1inthewebisγbb/2inthepositivezdirection,
whileinthecoverthedisplacementisγaa/2inthenegativezdirection.Notethattheshearstrainsγb