Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

46 CHAPTER 2 Two-Dimensional Problems in Elasticity


byEqs.(1.6):


∂σx
∂x

+

∂τxy
∂y

+X= 0

∂σy
∂y

+

∂τyx
∂y

+Y= 0

andtherequiredstress–strainrelationshipsobtainedfromEq.(1.47),namely,


εx=

1

E

(σx−νσy)

εy=

1

E

(σy−νσx)

γxy=

2 ( 1 +ν)
E

τxy

Wefindthatalthoughεzexists,Eqs.(1.22)through(1.26)areidenticallysatisfied,leavingEq.(1.21)
astherequiredcompatibilitycondition.SubstitutioninEq.(1.21)oftheprecedingstrainsgives


2 ( 1 +ν)

∂^2 τxy
∂x∂y

=

∂^2

∂x^2

(σy−νσx)+

∂^2

∂y^2

(σx−νσy) (2.1)

FromEqs.(1.6)


∂^2 τxy
∂y∂x

=−

∂^2 σx
∂x^2


∂X

∂x

(2.2)

and


∂^2 τxy
∂x∂y

=−

∂^2 σy
∂y^2


∂Y

∂y

(τyx=τxy) (2.3)

AddingEqs.(2.2)and(2.3),thensubstitutinginEq.(2.1)for2∂^2 τxy/∂x∂y,wehave

−( 1 +ν)

(

∂X

∂x

+

∂Y

∂y

)

=

∂^2 σx
∂x^2

+

∂^2 σy
∂y^2

+

∂^2 σy
∂x^2

+

∂^2 σx
∂y^2

or
(
∂^2
∂x^2


+

∂^2

∂y^2

)

(σx+σy)=−( 1 +ν)

(

∂X

∂x

+

∂Y

∂y

)

(2.4)

Thealternativetwo-dimensionalproblemofplanestrainmayalsobeformulatedinthesamemanner.
WehaveseeninSection1.11thatthesixequationsofcompatibilityreducetothesingleequation(1.21)
fortheplanestraincondition.Further,fromthethirdofEqs.(1.42)


σz=ν(σx+σy)(sinceεz=0forplanestrain)
Free download pdf