46 CHAPTER 2 Two-Dimensional Problems in Elasticity
byEqs.(1.6):
∂σx
∂x
+
∂τxy
∂y
+X= 0
∂σy
∂y
+
∂τyx
∂y
+Y= 0
andtherequiredstress–strainrelationshipsobtainedfromEq.(1.47),namely,
εx=
1
E
(σx−νσy)
εy=
1
E
(σy−νσx)
γxy=
2 ( 1 +ν)
E
τxy
Wefindthatalthoughεzexists,Eqs.(1.22)through(1.26)areidenticallysatisfied,leavingEq.(1.21)
astherequiredcompatibilitycondition.SubstitutioninEq.(1.21)oftheprecedingstrainsgives
2 ( 1 +ν)
∂^2 τxy
∂x∂y
=
∂^2
∂x^2
(σy−νσx)+
∂^2
∂y^2
(σx−νσy) (2.1)
FromEqs.(1.6)
∂^2 τxy
∂y∂x
=−
∂^2 σx
∂x^2
−
∂X
∂x
(2.2)
and
∂^2 τxy
∂x∂y
=−
∂^2 σy
∂y^2
−
∂Y
∂y
(τyx=τxy) (2.3)
AddingEqs.(2.2)and(2.3),thensubstitutinginEq.(2.1)for2∂^2 τxy/∂x∂y,wehave
−( 1 +ν)
(
∂X
∂x
+
∂Y
∂y
)
=
∂^2 σx
∂x^2
+
∂^2 σy
∂y^2
+
∂^2 σy
∂x^2
+
∂^2 σx
∂y^2
or
(
∂^2
∂x^2
+
∂^2
∂y^2
)
(σx+σy)=−( 1 +ν)
(
∂X
∂x
+
∂Y
∂y
)
(2.4)
Thealternativetwo-dimensionalproblemofplanestrainmayalsobeformulatedinthesamemanner.
WehaveseeninSection1.11thatthesixequationsofcompatibilityreducetothesingleequation(1.21)
fortheplanestraincondition.Further,fromthethirdofEqs.(1.42)
σz=ν(σx+σy)(sinceεz=0forplanestrain)