22.4 Shear 597
IfthemomentcenterischosentocoincidewiththepointofintersectionofthelinesofactionofSxand
Sy,Eq.(22.11)becomes
0 =
∑N
R= 1
∮
R
qbp 0 ds+
∑N
R= 1
2 ARqs,0,R (22.12)
Example 22.3
ThewingsectionofExample22.1(Fig.22.3)carriesaverticallyupwardshearloadof86.8kNinthe
planeoftheweb572.Thesectionhasbeenidealizedsuchthattheboomsresistallthedirectstresses,
whilethewallsareeffectiveonlyinshear.Iftheshearmodulusofallwallsis27600N/mm^2 exceptfor
thewall78forwhichitisthreetimesthisvalue,calculatetheshearflowdistributioninthesectionand
therateoftwist.Additionaldataaregiveninthetable.
Wall Length (mm) Thickness (mm) Cell area (mm^2 )
12, 56 1023 1.22 AI= 265000
23 1274 1.63 AII= 213000
34 2200 2.03 AIII= 413000
483 400 2.64
572 460 2.64
61 330 1.63
78 1270 1.22
ChoosingGREFas27600N/mm^2 then,fromEq.(22.9),
t∗ 78 =
3 × 27600
27600
×1.22=3.66mm
Hence,
δ 78 =
1270
3.66
= 347
Also,
δ 12 =δ 56 = 840 δ 23 = 783 δ 34 = 1083 δ 38 = 57 δ 84 = 95 δ 87 = 347
δ 27 = 68 δ 75 = 106 δ 16 = 202
We now “cut” the top skin panels in each cell and calculate the “open section” shear flows using
Eq.(19.6),which,sincethewingsectionisidealized,singlysymmetrical(asfarasthedirectstress-
carryingareaisconcerned)andissubjectedtoaverticalshearloadonly,reducesto
qb=
−Sy
Ixx
∑n
r= 1
Bryr (i)