2.4 St. Venant’s Principle 53
FromEq.(vi)
B+ 15 Dh^2 =0(ix)
sothat,subtractingEq.(viii)fromEq.(ix)
D=−
q
40 h^3
Then
B=
3 q
8 h
A=−
q
4
C=−
q
20 h
and
φ=
q
40 h^3
[− 10 h^3 x^2 + 15 h^2 x^2 y− 2 h^2 y^3 −( 5 x^2 y^3 −y^5 )]
Theobviousdisadvantageoftheinversemethodisthatwearedeterminingproblemstofitassumed
solutions,whereasinstructuralanalysisthereverseisthecase.However,insomeproblemstheshapeof
thebodyandtheappliedloadingallowsimplifyingassumptionstobemade,therebyenablingasolution
to be obtained. St. Venant suggested asemi-inverse methodfor the solution of this type of problem
inwhichassumptionsaremadeastostressordisplacementcomponents.Theseassumptionsmaybe
basedonexperimentalevidenceorintuition.St.Venantfirstappliedthemethodtothetorsionofsolid
sections(Chapter3)andtotheproblemofabeamsupportingshearloads(Section2.6).
2.4 St.Venant’sPrinciple................................................................................
IntheexamplesofSection2.3,wehaveseenthataparticularstressfunctionformmaybeapplicable
toavarietyofproblems.Differentproblemsarededucedfromagivenstressfunctionbyspecifying,in
thefirstinstance,theshapeofthebodyandthenassigningavarietyofvaluestothecoefficients.The
resultingstressfunctionsgivestresses,whichsatisfytheequationsofequilibriumandcompatibilityat
allpointswithinandontheboundaryofthebody.Itfollowsthattheappliedloadsmustbedistributed
aroundtheboundaryofthebodyinthesamemannerastheinternalstressesattheboundary.Inthecase
ofpurebending,forexample(Fig.2.2(a)),theappliedbendingmomentmustbeproducedbytensileand
compressiveforcesontheendsoftheplate,theirmagnitudesbeingdependentontheirdistancefrom
theneutralaxis.Ifthisconditionisinvalidatedbytheapplicationofloadsinanarbitraryfashionorby
preventingthefreedistortionofanysectionofthebody,thenthesolutionoftheproblemisnolonger
exact.Asthisisthecaseinpracticallyeverystructuralproblem,itwouldappearthattheusefulnessof
thetheoryisstrictlylimited.Tosurmountthisobstacle,weturntotheimportantprincipleofSt.Venant,
whichmaybesummarizedasstating:
that while statically equivalent systems of forces acting on a body produce substantially different
localeffectsthestressesatsectionsdistantfromthesurfaceofloadingareessentiallythesame.
Therefore, at a section AA close to the end of a beam supporting two point loadsP, the stress
distributionvariesasshowninFig.2.4,whileatthesectionBB,adistanceusuallytakentobegreater
thanthedimensionofthesurfacetowhichtheloadisapplied,thestressdistributionisuniform.