3.4 Torsion of a Narrow Rectangular Strip 81
solutionincreasesass/tdecreases.Therefore,inordertoretaintheusefulnessoftheanalysis,afactor
μisincludedinthetorsionconstant;thatis,
J=
μst^3
3
Values ofμfor different types of section are found experimentally and quoted in various references
[Refs.3,4].Weobservethatass/tapproachesinfinity,μapproachesunity.
The cross section of the narrow rectangular strip of Fig. 3.9 does not remain plane after loading
butsufferswarpingdisplacementsnormaltoitsplane;thiswarpingmaybedeterminedusingeitherof
Eqs.(3.10).Fromthefirstoftheseequations
∂w
∂x
=y
dθ
dz
(3.30)
sinceτzx=0(seeEqs.(3.27)).IntegratingEq.(3.30),weobtain
w=xy
dθ
dz
+constant (3.31)
Sincethecrosssectionisdoublysymmetricalw=0atx=y=0,sothattheconstantinEq.(3.31)is
zero.Therefore
w=xy
dθ
dz
(3.32)
andthewarpingdistributionatanycrosssectionisasshowninFig.3.10.
Fig.3.10
Warping of a thin rectangular strip.