Table 3: L16 orthogonal array.
123456789101112131415
1111111111 1 1 1 1 1 1
21111111222 2 2 2 2 2
3111222211 1 1 2 2 2 2
41112222222 2 1 1 1 1
51 22 1 1 22 1 1 2 2 1 1 2 2
61 22 1 1 2222 1 1 2 2 1 1
7122221 1 1 1 2 2 2 2 1 1
8122221 122 1 1 1 1 2 2
9212121212 1 2 1 2 1 2
10 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1
11 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1
12 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2
13 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1
14 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2
15 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2
16221211221121221
Pressuremeter simulation curve obtained by direct method
Pressuremeter simulation curve obtained by inverse analysis
The best simulation curve which is obtained by the best
set of model input parameters
In situ pressuremeter curve
1400
1200
1000
800
600
400
200
0
00.20 0.40 0.60 0.80 1. 0
V/V 0
P
(kPa)
Figure 9: In situ pressuremeter curve in comparison with the
best simulation curve, pressuremeter simulation curve obtained by
inverse analysis (performed after sensitivity analysis), and pres-
suremeter simulation curve obtained by substituting field attained-
parameters (direct method).
constitutive model based on an available test data. For
adopted example of “Le Rheu” clayey sand, three different test
datarelatedtothreepointsofB4,P1,andP2wereavailable
at depth of 2 m. The proposed approach can be applied to
Table 4: Modified L16 orthogonal array (M16).
12345
111111
212222
313333
41 4444
52 1 2 3 4
62 2 1 4 3
72 3 4 1 2
82 4 3 2 1
93 1 3 4 2
10 3 2 4 3 1
11 3 3 1 2 4
12 3 4 2 1 3
13 4 1 4 2 3
14 4 2 3 1 4
15 4 3 2 4 1
16 4 4 1 3 2
Table 5: Considered levels for each factor.
Columns Factors Level ( 1 )Level( 2 )Level( 3 )Level( 4 )
1 퐸(kPa) 20000 40000 60000 80000
2 푚 0.5 0.666 0.832 1
3 퐶(kPa) 1 15.66 30.32 45
4 휑 30 33.33 36.66 40
5 휓 0 3.33 6.66 10
the curve of each point independently, and then the corre-
sponding mechanical parameters may be averaged to repre-
sentthemeanvaluesofthesoilmechanicalparametersof
“Le Rheu” clayey sand at depth of 2 m. According toFigure 1,
the parameters obtained from the points P1 and P2 should