0 20 40 60 80 100
8
9
10
11
12
13
14
15
Shear
stren gt
h
rat
io
at
fai
lure
Fabri
c
ani
sot
ropy
Fabric anisotropy
Bedding angle (Deg)
Shear stren gth ratio at failure
- 9
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
(a)
4
6
8
10
12
- 4
- 6
- 8
- 0
- 2
- 4
- 6
- 8
- 0
0 20 40 60 80 100
Shear
stren gt
h
rat
io
at
fai
lure
Fabri
c
ani
sot
ropy
Bedding angle (Deg)
Fabric anisotropy
Shear stren gth ratio at failure
(b)
- 5
- 0
- 5
- 0
- 5
- 0
- 5
- 0
0. 5
0. 6
0. 7
0. 8
0. 9
0 20 40 60 80 100
Shear
st
ren gt
h
rat
io
at
fai
lure
Fabri
c ani
sot
ropy
Bedding angle (Deg)
Fabric anisotropy
Shear stren gth ratio at failure
(c)
- 8
- 0
- 2
- 4
- 6
- 8
- 0
- 00
- 05
- 10
- 15
- 20
- 25
0 20 40 60 80 100
Shear
st
ren gt
h
rat
io
at
fai
lure
Fabri
c ani
sot
ropy
Bedding angle (Deg)
Fabric anisotropy
Shear stren gth ratio at failure
(d)
Figure 1: Samples with휙휇=52∘and푟 1 /푟 2 = 1.1(a),휙휇=26∘and푟 1 /푟 2 = 1.1(b),휙휇=52∘and푟 1 /푟 2 = 1.4(c), and휙휇=26∘and푟 1 /푟 2 = 1.4
(d).
6. Fabric Evolution
The parameters훼and휃푓show the status of the fabric and
its evolution. These parameters have a great influence on
the behavior of the dilatancy equation. Shaverdi et al. [ 29 ]
proposed an equation which can predict the magnitude of훼
and휃푓in the presence of the noncoaxiality between stress and
fabric. This equation is obtained from the microlevel analysis.
To c a l c u l a t e t h e훼parameter, the magnitude of the shear to
normal stress ratio on the spatially mobilized plane (SMP)
must be determined. In the triaxial case, for example,휏/푝may
be obtained from the following equation [ 30 ]:
휏
푝
=√
휎 1
휎 3
−√
휎 3
휎 1
. (19)
The parameters훼and휃푓may be obtained from the fol-
lowing equations in the presence of noncoaxiality [ 29 ]:
훼=
(휏/푝)cos휙휇mob−sin휙휇mob
sin(2휃푓+휙휇mob)−((휏/푝)cos(2휃푓+휙휇mob))
,
(20)
휃̇푓=휃̇휎+(^1
2
)⋅푑휂⋅(휃휎−휃푓), (21)
where the dot over휃shows the variation. The most important
parameter in the above equation is the interparticle mobilized