0.00 1.25 2.50 3.75 5. 00 6.25 7. 50
−30. 00
−20. 00
−10. 00
- 00
- 00
- 00
- 00
0.00 1.25 2.50 3.75 5.00 6.25 7. 50
Shear
force
(kN )
Coalface distance (m)
L 1 L 2 L 3 L 4 L 5 L 6
Type 1
(a)
0.00 1.25 2.50 3.75 5. (^00) 6. 25
−30. 00
−20. 00
−10. 00
- 00
- 00
- 00
- 00
0.00 1.25 2.50 3.75 5.00 6. 25
Shear
force
(kN )
Coalface distance (m)
L 1 L 2 L 3 L 4 L 5
Type 2
(b)
Figure 10: Shear force.
(^0 1 2 3 4 5 6)
−10. 00
−8. 00
−6. 00
−4. 00
−2. 00
- 00
- 00
0 150 300 450 600 750 900
De ect
ion
(mm)
Points of control along the panel
- 75 m
- 25 m
- 50 m
L 1 L 2 L 3 L 4 L 5 L 6
Type 1
Figure 11: Deflection versus length of spans.
Appendix
The not null elements of the matrices푀(24×24)={푚푖푗}and
퐵(24×1)={푏푖}of the problem type 1 are as follows.
Row 1.
푚1,1=푚1,3=1,
푏 1 =−푦푝1.
(A.1)
Row 2.
푚2,1=푚2,2=푚2,4=1,
푚2,3=−1.
(A.2)
0.00 1.25 2.50 3.75 5. 00 6.25 7. 50
−22. 00
−17. 00
−12. 00
−7. 00
−2. 00
- 00
0.00 1.25 2.50 3.75 5.00 6.25 7. 50
De ect
ion
(mm)
Coalface distance (m)
500 m
1500 m
2500 m
L 1 L 2 L 3 L 4 L 5 L 6
Type 1
Figure 12: Deflection versus depth of the panel.
Row 3.
푚3,1=푒퐾^1 푥^1 ⋅cos퐾 1 푥 1 ,
푚3,2=푒퐾^1 푥^1 ⋅sin퐾 1 푥 1 ,
푚3,3=푒−퐾^1 푥^1 ⋅cos퐾 1 푥 1 ,
푚3,4=푒−퐾^1 푥^1 ⋅sin퐾 1 푥 1 ,
푚3,5=−푒퐾^2 푥^1 ⋅cos퐾 2 푥 1 ,
푚3,6=−푒퐾^2 푥^1 ⋅sin퐾 2 푥 1 ,
푚3,7=−푒−퐾^2 푥^1 ⋅cos퐾 2 푥 1 ,