671017.pdf

(vip2019) #1

Here,퐾is a constant. The boundary condition ( 19 ) deter-
mines the maximum value of퐼:


푝(푟푏)−푝(푟푏+퐼max)

=

2휏 0


⋅(−푟푏+푟푏+퐼max)=Δ푝㨐⇒퐼max=

푏Δ푝

2휏 0

.

(22)

We g e t t h e s a m e v a l u e ( 2 )asintheplaincase.
The complete solution in the radial case involves the
following constants:


퐼max=

푏Δ푝

2휏 0

,훾=

퐼max
푟푏

=

푏Δ푝

2푟푏휏 0

,

푡 0 =

6휇푔Δ푝

(휏 0 )

2 ,푄^0 =

6휋푏(퐼max)^2
푡 0

=

휋푏^3 Δ푝

4휇푔

.

(23)

2.4. Solution for the Pressure.In the dimensionless solution
forthepressure,weusetheboreholeradiusasscalinglength:


푟耠=


푟푏

,퐼耠=


푟푏

,푟푏≤푟≤푟푏+퐼⇐⇒1≤푟耠≤1+퐼耠.

(24)

The pressure is scaled byΔ푝/훾.Thevariable푠for the deriv-
ative of the pressure in ( 18 )becomes


푝耠=

훾⋅(푝−푝푤)

Δ푝

㨐⇒ 푠 =


2휏 0

⋅(−

푑푝

푑푟

)

=−

푏Δ푝/훾

2휏 0 푟푏


푑푝耠

푑푟耠

=−

푑푝耠

푑푟耠

.

(25)

The dimensionless form of ( 18 )-( 19 ) becomes after some
recalculations


푟耠=푄耠⋅푔(−

푑푝耠

푑푟耠

), 푔(푠)=

3푠^2

2푠^3 −3푠^2 +1

,

푄耠=

2휇푔푄

휋푏^2 휏 0 푟푏

,푝耠( 1 )−푝耠(1 + 퐼耠)=훾,

1≤푟耠≤1+퐼耠.

(26)

This is the basic equation to solve for the pressure distribu-
tion.Itistobesolvedfor0<퐼耠<훾for positive values of the
parameter훾.
The solution is derived in detail in [ 14 ]. A brief derivation
is presented in the appendix. The dimensionless pressure is
given by


푝耠(푟耠)=훾−푄耠⋅[퐺(푄̃ 耠)−퐺(̃

푄耠

푟耠

)], 1 ≤ 푟耠≤1+퐼耠.

(27)

The composite function퐺(푞)̃ ,whichisusedfor푞=푄耠and
푞=푄耠/푟耠, is defined by

퐺(푞)=퐺(̃ ̃푠(푞)),

̃푠(푞)=

1

(^2) √1+푞⋅sin{(1/3)⋅arcsin[(1 + 푞)−1.5]}


,

퐺(푠)=

4

3

⋅ln(푠−1)+

1

6

⋅ln(2푠 + 1)−

1

푠−1


3푠^3

(2푠 + 1)(푠−1)^2

.

(28)

The functioñ푠(푞)is the root to the cubic equation푞⋅푔(푠)=1
for푠>1.Thefunction퐺(푠)is an integral of푠⋅푑푔/푑푠.
The value of the factor푄耠hastobechosensothatthetotal
pressure difference corresponds to the injection pressure,
( 26 ). This gives

훾=푄耠⋅[퐺(푄̃ 耠)−퐺(̃

푄耠

1+퐼耠

)]. (29)

This equation determines푄耠as a function of퐼耠and훾:

푄耠=푓耠(퐼耠,훾), 0≤퐼耠≤훾, 훾>0. (30)

The value of푄耠for퐼耠=훾is zero in accordance with ( 21 )-( 22 ):
푓耠(훾,훾) = 0.

2.5. Motion of Grout Front.In the dimensionless formulation
oftheequationforthemotionofthegroutfront,weuse퐼max
as scaling length. We also use푄 0 and푡 0 from ( 23 )

퐼퐷=


퐼max

,퐼耠=훾퐼퐷,

푄퐷=


푄 0

,푡퐷=


푡 0

.

(31)

The grout flux becomes from ( 23 )and( 26 )

푄 0


=

휋푏^2 휏 0 푟푏

2휇푔

㨐⇒ 푄 =

푄 0


⋅푓耠(퐼耠,훾)=푄 0 ⋅푄퐷(퐼퐷,훾).

(32)

The dimensionless grout flux is then

푄퐷(퐼퐷,훾)=

푓耠(훾퐼퐷,훾)


,0≤퐼퐷≤1. (33)

The dimensionless equation for the front motion is now from
( 32 ), ( 20 ), ( 31 ), and ( 23 )

푄 0


⋅푓耠(훾퐼퐷,훾)=2휋푏⋅

(퐼max)

2

푡 0

⋅(

1


+퐼퐷)⋅

푑퐼퐷

푑푡퐷

or

푑푡퐷

푑퐼퐷

=


3


1/훾 + 퐼퐷

푓(훾퐼퐷,훾)

.

(34)
Free download pdf