0305 10 15 20 25
Interface shear displacement (mm)
0305 10 15 20 25
0
0. 5
1
1. 5
2
- 5
3
3. 5
Vertical
displacement (mm)
Shear displacement (mm)
Shear stress (kPa)
ni=400kPa
ni=300kPa
ni= 200kPa
ni= 100kPa
− 0. 5
ni=100kPa
ni=200kPa
ni= 300kPa
ni= 400kPa
0
10
20
30
40
50
Figure 7: Test results for the interface between plate #1 and clay (applied normal stress of 100 kPa).
0305 10 15 20 25
Interface shear displacement (mm)
Shear stress (kPa)
ni=400kPa
ni=300kPa
ni= 200kPa
ni= 100kPa
0
10
20
30
40
50
0305 10 15 20 25
0
0. 5
1
1. 5
2
- 5
3
3. 5
Vertical
displacement (mm)
− 0. (^5) Shear displacement (mm)
ni=100kPa
ni=200kPa
ni= 300kPa
ni= 400kPa
4
Figure 8: Test results for the interface between plate #2 and clay (applied normal stress of 100 kPa).
Here, [퐷푒푝] is the elastoplastic constitutive matrix;
MorchedZeghaletal.andZhouGuo-qingetal.proposed
the expression of[퐷푒푝]. To simplify the model, the associated
flowruleisappliedintheproposedmodelasfollows:
[퐷푒푝]=[퐷푒]−
[퐷푒]{푛}푇{푛}[퐷푒]
퐻+푀+{푛}[퐷푒]{푛}푇
, (4)
where퐻is the hardening parameter, while푀describes the
influence of the change in the interfacial frictional coefficient
with the stress state. In this proposed model, the interfacial
frictionalcoefficientisassumedtobeconstantduringshear
(푀=0) to perform the research on the effect of normal stress
history. The energy accumulated at the interface,푊푝,istaken
as the hardening parameter:
퐻=푊푝=∫
loading
푑휎푑휇푛+∫
loading
휎푛푖푑휇푛−∫
unloading
푑휎푑휇푛
−∫
sheering
푑휎푑휇푛−∫
sheering
푑휏푑휇푠.
(5)
During the loading, the initial energies accumulated
at the interface are ∫loading푑휎푑휇푛 and ∫loading휎푛푖푑휇푛,
and the energy released during the normal unloading is
∫unloading푑휎푑휇푛. During shearing, the energy consumed to