0305 10 15 20 25
Interface shear displacement (mm)0305 10 15 20 2500. 511. 52- 5
33. 5Verticaldisplacement (mm)Shear displacement (mm)Shear stress (kPa)ni=400kPa
ni=300kPani= 200kPa
ni= 100kPa− 0. 5ni=100kPa
ni=200kPani= 300kPa
ni= 400kPa01020304050Figure 7: Test results for the interface between plate #1 and clay (applied normal stress of 100 kPa).0305 10 15 20 25
Interface shear displacement (mm)Shear stress (kPa)ni=400kPa
ni=300kPani= 200kPa
ni= 100kPa010203040500305 10 15 20 2500. 511. 52- 5
33. 5Verticaldisplacement (mm)− 0. (^5) Shear displacement (mm)
ni=100kPa
ni=200kPa
ni= 300kPa
ni= 400kPa
4
Figure 8: Test results for the interface between plate #2 and clay (applied normal stress of 100 kPa).
Here, [퐷푒푝] is the elastoplastic constitutive matrix;
MorchedZeghaletal.andZhouGuo-qingetal.proposed
the expression of[퐷푒푝]. To simplify the model, the associated
flowruleisappliedintheproposedmodelasfollows:
[퐷푒푝]=[퐷푒]−
[퐷푒]{푛}푇{푛}[퐷푒]
퐻+푀+{푛}[퐷푒]{푛}푇
, (4)
where퐻is the hardening parameter, while푀describes the
influence of the change in the interfacial frictional coefficient
with the stress state. In this proposed model, the interfacial
frictionalcoefficientisassumedtobeconstantduringshear
(푀=0) to perform the research on the effect of normal stress
history. The energy accumulated at the interface,푊푝,istaken
as the hardening parameter:퐻=푊푝=∫
loading푑휎푑휇푛+∫
loading휎푛푖푑휇푛−∫
unloading푑휎푑휇푛
−∫
sheering푑휎푑휇푛−∫
sheering푑휏푑휇푠.
(5)
During the loading, the initial energies accumulated
at the interface are ∫loading푑휎푑휇푛 and ∫loading휎푛푖푑휇푛,
and the energy released during the normal unloading is
∫unloading푑휎푑휇푛. During shearing, the energy consumed to