# Engineering Mechanics

(Joyce) #1
``````31.15. Torque and Angular Acceleration. 31.16. Relation Between Kinetics
of Linear Motion and Kinetics of Motion of Rotation. 31.17. Flywheel.
31.18. Motion of a Body Tied to a String and Passing Over a Pulley.
31.19. Motion of Two Bodies Connected by a String and Passing Over a
Pulley. 31.20. Motion of a Body Rolling on a Rough Horizontal Plane
without Slipping. 31.21. Motion of a Body Rolling Down a Rough Inclined
Plane without Slipping.``````

1. Motion of Vehicles 651–

``````32.1. Introduction. 32.2. Types of Motions of Vehicles. 32.3. Motion of a
Vehicle Along a Level Track when the Tractive Force Passes Through its
Centre of Gravity. 32.4. Motion of a Vehicle Along a Level Track when
the Tractive Force Passes Through a Point Other than its Centre of Gravity.
32.5. Driving of a Vehicle. 32.6. Braking of a Vehicle. 32.7. Motion of
Vehicles on an Inclined Plane.``````

1. Transmission of Power by Belts and Ropes 670–

``````33.1. Introduction. 33.2. Types of Belts. 33.3. Velocity Ratio of a Belt
Drive. 33.4. Velocity Ratio of a Simple Belt Drive. 33.5. Velocity Ratio
of a Compound Belt Drive. 33.6. Slip of the Belt. 33.7. Types of Belt
Drives. 33.8. Open Belt Drive. 33.9. Cross Belt Drive. 33.10. Length of
the Belt. 33.11. Length of an Open Belt Drive. 33.12. Length of a Cross-
Belt Drive. 33.13. Power Transmitted by a Belt. 33.14. Ratio of Tensions.
33.15. Centrifugal Tension. 33.16. Maximum Tension in the Belt.
33.17. Condition for Transmission of Maximum Power. 33.18. Belt Speed
for Maximum Power. 33.19. Initial Tension in the Belt. 33.20. Rope
Drive. 33.21. Advantages of Rope Drive. 33.22. Ratio of Tensions in
Rope Drive.``````

1. Transmission of Power by Gear Trains 696–

``````34.1. Introduction. 34.2. Friction Wheels. 34.3. Advantages and
Disadvantages of a Gear Drive. 34.4. Important Terms. 34.5. Types of
Gears. 34.6. Simple Gear Drive. 34.7. Velocity Ratio of a Simple Gear
Drive. 34.8. Power Transmitted by a Simple Gear. 34.9. Train of Wheels.
34.10. Simple Trains of Wheels. 34.11. Compound Train of Wheels.
34.12. Design of Spur Wheels. 34.13. Train of Wheels for the Hour and
Minute Hands of a 12-Hour clock. 34.14. Epicyclic Gear Train.
34.15. Velocity Ratio of an Epicyclic Gear Train. 34.16. Compound
Epicyclic Gear Train (Sun and Planet Wheel). 34.17. Epicyclic Gear Train
with Bevel Wheels.``````

1. Hydrostatics 718–

``````35.1. Introduction. 35.2. Intensity of Pressure. 35.3. Pascal’s Law.
35.4. Pressure Head. 35.5. Total Pressure. 35.6. Total Pressure on an
Immersed Surface. 35.7. Total Pressure on a Horizontally Immersed
Surface. 35.8. Total Pressure on a Vertically Immersed Surface. 35.9. Total
Pressure on an Inclined Immersed Surface. 35.10. Centre of Pressure.
35.11. Centre of Pressure of a Vertically lmmersed Surface. 35.12. Centre
of Pressure of an Inclined Immersed Surface. 35.13. Pressure Diagrams.
35.14. Pressure Diagram Due to One Kind of Liquid on One Side.
35.15. Pressure Diagram Due to One Kind of Liquid Over Another on
One Side. 35.16. Pressure Diagram Due to Liquids on Both Sides.
35.17. Centre of Pressure of a Composite Section.``````

1. Equilibrium of Floating Bodies 742–

``````36.1. Introduction. 36.2. Archimedes’ Principle. 36.3. Buoyancy.
36.4. Centre of Buoyancy. 36.5. Metacentre. 36.6. Metacentric Height.
36.7. Analytical Method for Metacentric Height. 36.8. Types of Equilibrium
of a Floating Body. 36.9. Stable Equilibrium. 36.10. Unstable Equilibrium.
36.11. Neutral Equilibrium. 36.12. Maximum Length of a Body Floating
Vertically in Water. 36.13. Conical Buoys Floating in a Liquid.
Index 759–
(xii)``````

Top