Chapter 1 : Introduction 9
sin^2 θ + cos^2 θ = 1
1 + tan^2 θ = sec^2 θ
1 + cot^2 θ = cosec^2 θ
sin^2 1– cos2
2
A
A=
- cos^2 1cos2
2
A
A
+
=
- 2 cos A sin B = sin (A + B) – sin ( A – B)
- Rules for the change of trigonometrical ratios:
sin (– ) – sin
cos (– ) cos
tan (– ) – tan
()
cot (– ) – cot
sec (– ) sec
cosec (– ) – cosec
A
⎧ θ=θ
⎪ θ=θ
⎪
⎪⎪ θ=θ
⎨
⎪ θ=θ
⎪ θ=θ
⎪
⎪⎩ θ= θ
sin (90 – ) cos
cos (90 – ) sin
tan (90 – ) cot
()
cot (90 – ) tan
sec (90 – ) cosec
cosec (90 – ) sec
B
⎧ °θ = θ
⎪ °θ = θ
⎪
⎪⎪ °θ = θ
⎨
⎪ °θ = θ
⎪ °θ = θ
⎪
⎪⎩ °θ= θ
sin (90 ) cos
cos (90 ) – sin
tan (90 ) – cot
()
cot (90 ) – tan
sec (90 ) – cosec
cosec (90 ) sec
C
⎧ °+θ = θ
⎪ °+θ = θ
⎪
⎪⎪ °+θ = θ
⎨
⎪ °+θ = θ
⎪ °+θ = θ
⎪
⎪⎩ °+θ = θ
sin (180 – ) sin
cos (180 – ) – cos
tan (180 – ) – tan
()
cot (180 – ) – cot
sec (180 – ) – sec
cosec (180 – ) cosec
D
⎧ °θ = θ
⎪ °θ = θ
⎪
⎪⎪ °θ = θ
⎨
⎪ °θ = θ
⎪ °θ = θ
⎪
⎪⎩ °θ= θ
sin (180 ) – sin
cos (180 ) – cos
tan (180 ) tan
()
cot (180 ) cot
sec (180 ) – sec
cosec (180 ) – cosec
E
⎧ °+θ = θ
⎪ °+θ = θ
⎪
⎪⎪ °+θ = θ
⎨
⎪ °+θ = θ
⎪ °+θ = θ
⎪
⎪⎩ °+θ = θ