38 Two examples
T 2 1
2U2 NkkkBNkkkB
UUU(0) = Nk^12 kkBUU=NkkkBT0Fig. 3.9The variation ofinternalenergy withtemperaturefor an assemblyofharmonic oscillators. The
characteristic temperatureθdependsonthefrequency ofthe oscillators (see text). Note thehighandlow
temperaturelimits.
T2 Classical limitExtreme quantum limit0 CNkkkBFig. 3.1 0 The variation of heat capacity with temperature for an assembly of harmonic oscillators.
The entropySis also readily derived, the easiest route again being to evaluateF,
(2.28), andtodifferentiateFwithrespect toT.The resultis
S=NkkkB[
ln(
exp(θ/T)
exp(θ/T)− 1)
+
(θ/T)
(exp(θ/T)− 1 )]
(3.16)
The reader maywishto checkthat thelow temperaturelimitisS =0 (no sur-
prise), and that at high temperatures the expression becomesS=NkkkBln(T/θ)=
NkkkBln(kkkBT/hν).