Statistical Physics, Second Revised and Enlarged Edition

(Barry) #1
The Maxwell–Boltzmann distribution ofspeeds 67

1 2 3

max rms



n()

///T

Fig. 6. 1 The Maxwell–Boltzmanndistribution ofspeedsin a gas. The representative speedsvmax,v ̄and
vrmsaredefinedinthe text.

Also since thegasisisotropicandhas no net velocitythethree component velocities
must satisfy


Mvvx^2 / 2 =Mv^2 y/ 2 =Mv^2 z/ 2 =M(vv^2 x+v^2 y+v^2 z)/ 6

=Mv^2 rms/ 6 =kkkBT/ 2

This is another example of the classicallaw of equipartition of energyreferred to
earlierin section 3.2. Eachdegree offreedom ofthesystem,i.e. the translational
motion of each molecule in each of the three dimensions of space, contributes^12 kkkBT
to the internal energy of the system. We shall see this result again in the following
section andinChapter 7.
Finally, before leavingthe topic, we maynote that other more detailed statistical
information can be compiled and used in a similar way. Again the key isni=gi×fffi,
i.e. number ofparticlesinagroup = number ofstatesinthegroup×fillingfactor.
Suppose for example one wants the number of particles with a velocity close to
a particular valuev.We maydefine the usualdensityfunctionsfornandgsuch
thatn(vvx,vy,vz)dvvxdvvydvzisthe number ofparticles andg(vvx,vy,vz)dvvxdvydvzthe
number of states with velocity in the element dvvxdvydvzat velocityv=(vvx,vy,vz).
Fitting wavesintoboxesinthis case gives thegfunction tobe a constant; the states
are evenlyspreadink-space, andhenceinv-space also. AndtheBoltzmannfactorin
fffiis simply exp(−Mv^2 / 2 kkkBT)withv^2 =vvx^2 +v^2 y+v^2 z.Therefore the result is

n(vvx,vy,vz)dvvxdvvydvz

=const×exp(−Mv^2 / 2 kkkBT)dvvxdvydvz (6.10)

with the value of the normalization constant left as aproblem (Appendix E).
Free download pdf