26.9 Exercises 299
(e)f(x) =|x|onR.
(f)f(x) = max{|x|,x^2 }onR.
26.4Prove Theorem 26.3.
26.5Prove Corollary 26.7.
26.6Prove Proposition 26.13.
26.7 Letfbe the convex function given in Example 26.9.
(a) Forx,y∈dom(f) findDf(x,y).
(b) Computef∗(u) and∇f∗(u).
(c) Find dom(∇f∗).
(d) Show that foru,v∈(−∞,0]d,
Df∗(u,v) =−
∑d
i=1
(ui−vi)^2
uiv^2 i
.
(e) Verify the claims in Theorem 26.6.
26.8 Let f : Rd → R ̄ be the unnormalized negentropy function from
Example 26.10. We have seen in Example 26.5 thatDf(x,y) =
∑
i(xilog(xi/yi) +
yi−xi).
(a) Computef∗(u) and∇f∗(u).
(b) Find dom(∇f∗).
(c) Show that foru,v∈Rd,
Df∗(u,v) =
∑d
i=1
exp(vi)(vi−ui) + exp(ui)−exp(vi).
(d) Verify the claims in Theorem 26.6.
26.9Letfbe Legendre. Show thatf ̃given byf ̃(x) =f(x) +〈x,u〉is also
Legendre for anyu∈Rd.
26.10 Letfbe the unnormalized negentropy function from Example 26.5.
(a) Prove thatfis Legendre.
(b) Giveny∈[0,∞)d, prove that argminx∈Pd− 1 Df(x,y) =y/‖y‖ 1.
26.11 Letα∈[0, 1 /d] andA=Pd− 1 ∩[α,1]dandfbe the unnormalized
negentropy function. Lety∈[0,∞)dandx=argminx∈ADf(x,y) and assume
thaty 1 ≤y 2 ≤···≤yd. Letmbe the smallest value such that
ym(1−(m−1)α)≥α
∑d
j=m
yj.