Joan P. Hutchinson. “Coloring ordinary maps, maps of empires, and maps of the moon”, Mathematics
Magazine, vol.66, 1993, p.211-26.
CAPÍTULO 10: Impérios e a eletrônica
Joan P. Hutchinson. “Coloring ordinary maps, maps of empires, and maps of the moon”, Mathematics
Magazine, vol.66, 1993, p.211-26.
CAPÍTULO 11: Ressuscitando o baralho
Persi Diaconis, Ron Graham e Bill Kantor. “The mathematics of perfect shuffles”, Advances in Applied
Mathematics, vol.4, 1983, p.175-96.
Martin Gardner. Mathematical Carnival. Penguin e Alfred A. Knopf, Nova York, 1975.
CAPÍTULO 12: A conjectura da bolha de sabão
Richard Courant e Herbert Robbins. What Is Mathematics?, Oxford University Press, Oxford, 1969.
Michael Hutchings, Frank Morgan, Manuel Ritore e Antonio Ros. “Proof of the double bubble conjecture”,
Electronic Research, Announcements of the American Mathematical Society, vol.6, 2000, p.45-9.
Detalhes on-line em http://www.ugr.es/~ritore/bubble/bubble.pdf.
Cyril Isenberg. The Science of Soap Films and Soap Bubbles. Dover, Nova York, 1992.
Frank Morgan. “The double bubble conjecture”, Focus, vol.15, n.6, 1995, p.6-7.
Frank Morgan. “Proof of the double bubble conjecture”, American Mathematical Monthly, vol.108, 2001,
p.193-205.
CAPÍTULO 13: Linhas cruzadas na fábrica de tijolos
Nadine C. Myers. “The crossing number of Cm × Cn: A reluctant induction”, Mathematics Magazine, vol.71,
1998, p.350-9.
CAPÍTULO 14: Divisão sem inveja
Steven Brams e Alan D. Taylor. “An envy-free cake division protocol”, American Mathematical Monthly,
vol.102, 1995, p.9-18.
Steven Brams, Alan D. Taylor e William S. Zwicker. “A moving-knife solution to the four-person envy-free
cake-division problem”, Proceedings of the American Mathematical Society, vol.125, 1997, p.547-54.
Jack Robertson e William Webb. Cake Cutting Algorithms. A.K. Peters, Natick, MA, 1998.
CAPÍTULO 15: Vaga-lumes frenéticos
J. Buck e E. Buck. “Synchronous Fireflies”, Scientific American, vol.234, 1976, p.74-85.
Renato Mirollo e Steven Strogatz. “Synchronisation of pulse-coupled biological oscillators”, SIAM Journal of
Applied Mathematics, vol.50, 1990, p.1645-62.
C. Peskin. Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences,
Universidade de Nova York, Nova York, 1975, p.268-78.
CAPÍTULO 16: Por que o fio do telefone fica enroscado?
Colin Adams. The Knot Book, W.H. Freeman, São Francisco, 1994.
Richard B. Sinden. DNA Structure and Function. Academic Press, San Diego, 1994, vol.10, n.2, 1988, p.56-
64.