Joan P. Hutchinson. “Coloring ordinary maps, maps of empires, and maps of the moon”, Mathematics
Magazine, vol.66, 1993, p.211-26.
CAPÍTULO 10: Impérios e a eletrônicaJoan P. Hutchinson. “Coloring ordinary maps, maps of empires, and maps of the moon”, Mathematics
Magazine, vol.66, 1993, p.211-26.
CAPÍTULO 11: Ressuscitando o baralhoPersi Diaconis, Ron Graham e Bill Kantor. “The mathematics of perfect shuffles”, Advances in Applied
Mathematics, vol.4, 1983, p.175-96.
Martin Gardner. Mathematical Carnival. Penguin e Alfred A. Knopf, Nova York, 1975.
CAPÍTULO 12: A conjectura da bolha de sabãoRichard Courant e Herbert Robbins. What Is Mathematics?, Oxford University Press, Oxford, 1969.
Michael Hutchings, Frank Morgan, Manuel Ritore e Antonio Ros. “Proof of the double bubble conjecture”,
Electronic Research, Announcements of the American Mathematical Society, vol.6, 2000, p.45-9.
Detalhes on-line em http://www.ugr.es/~ritore/bubble/bubble.pdf.
Cyril Isenberg. The Science of Soap Films and Soap Bubbles. Dover, Nova York, 1992.
Frank Morgan. “The double bubble conjecture”, Focus, vol.15, n.6, 1995, p.6-7.
Frank Morgan. “Proof of the double bubble conjecture”, American Mathematical Monthly, vol.108, 2001,
p.193-205.
CAPÍTULO 13: Linhas cruzadas na fábrica de tijolosNadine C. Myers. “The crossing number of Cm × Cn: A reluctant induction”, Mathematics Magazine, vol.71,
1998, p.350-9.
CAPÍTULO 14: Divisão sem invejaSteven Brams e Alan D. Taylor. “An envy-free cake division protocol”, American Mathematical Monthly,
vol.102, 1995, p.9-18.
Steven Brams, Alan D. Taylor e William S. Zwicker. “A moving-knife solution to the four-person envy-free
cake-division problem”, Proceedings of the American Mathematical Society, vol.125, 1997, p.547-54.
Jack Robertson e William Webb. Cake Cutting Algorithms. A.K. Peters, Natick, MA, 1998.
CAPÍTULO 15: Vaga-lumes frenéticosJ. Buck e E. Buck. “Synchronous Fireflies”, Scientific American, vol.234, 1976, p.74-85.
Renato Mirollo e Steven Strogatz. “Synchronisation of pulse-coupled biological oscillators”, SIAM Journal of
Applied Mathematics, vol.50, 1990, p.1645-62.
C. Peskin. Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences,
Universidade de Nova York, Nova York, 1975, p.268-78.
CAPÍTULO 16: Por que o fio do telefone fica enroscado?Colin Adams. The Knot Book, W.H. Freeman, São Francisco, 1994.
Richard B. Sinden. DNA Structure and Function. Academic Press, San Diego, 1994, vol.10, n.2, 1988, p.56-
64.