Optimizing Optimization: The Next Generation of Optimization Applications and Theory (Quantitative Finance)

(Romina) #1

Optimal solutions for optimization in practice 91


Benartzi , S. , & Thaler , R. H. ( 2001 ). Na ï ve diversification strategies in defined contri-
bution saving plans. American Economic Review , 91 ( 1 ) , 79 – 98.
Cascon, A., Keating, C., & Shadwick, W. F. (2002). The mathematics of the omega
measure , Working Paper, The Finance Development Centre.
Cuthbertson , K. , & Nitzsche , D. ( 2004 ). Quantitative financial economics. Stocks,
Bonds & Foreign Exchange , 475.
DeMiguel , V. , Garlappi , L. , & Uppal , R. ( 2007 ). Optimal versus na ï ve diversification: How
inefficient is the 1/N portfolio strategy? forthcoming. Review of Financial Studies.
Fishburn , P. C. ( 1977 ). Mean-risk analysis with risk associated with below-target
returns. The American Economic Review , 67 , 116 – 126.
Fishburn , P. C. ( 1982 ). Foundations of risk measurement. II. Effects of gains on risk.
Journal of Mathematical Psychology , 25 , 226 – 242.
Fishburn , P. C. ( 1984 ). Foundations of risk measurement. I. Risk as probable loss.
Management Science , 30 , 396 – 406.
Ho , L. , Cadle , J. , & Theobald , M. ( 2008 ). Portfolio selection in an expected shortfall
framework during the recent “ credit crunch ” period. Journal of Asset Management ,
9 , 121 – 137.
Ingersoll, J. (1987). Theory of Financial Decision Making. Savage, MD: Rowman &
Littlefield, 245.
Jorion , P. ( 2006 ). Value at risk: The new benchmark for managing financial risk ( 3rd
ed. ). New York: McGraw-Hill.
Kahneman , D. , & Tversky , A. ( 1979 ). Prospect theory: An analysis of decision under
risk. Econometrica , 47 ( 12 ) , 263 – 291.
Keating , C. , & Shadwick , W. F. ( 2002a ). A universal performance measure. The Finance
Development Centre, London.
Keating , C. , & Shadwick , W. F. ( 2002b ). A universal performance measure. The Journal
of Performance Measurement , 6 ( 3 ) , 59 – 84.
Levy , H. , & Markowitz , H. ( 1979 ). Approximating expected utility by a function of
mean and variance. American Economic Review , 69 ( 3 ) , 308 – 317.
Maillard, S., Roncalli, Th., & Teiletche, J. (2009). On the properties of equally-
weighted risk contributions portfolios , Working Paper.
Mandelbrot , B. ( 1963 ). The variation in certain speculative prices. Journal of Business ,
36 , 394 – 419.
Meucci, A. (2008). The Black – Litterman Approach: Original Model and Extensions.
Bloomberg Portfolio Research Paper, August.
Nesterov , Y. , & Todd , M. J. ( 1997 ). Self-scaled barriers and interior point methods for
convex programming. Mathematical Operator Research , 22 ( 1 ).
Passow , A. ( 2005 ). Omega portfolio construction with Johnson distributions. Risk , 4 , 85.
Scowcroft , A. , & Satchell , S. ( 2000 ). A Demystification of the Black – Litterman
model: Managing quantitative and traditional construction. Journal of Asset
Management ( September ) , 138 – 150.
Sharpe , W. F. ( 1964 ). Capital asset prices: A theory of market equilibrium under consid-
eration of risk. Journal of Finance , 19.
Swensen , D. F. ( 2000 ). Pioneering portfolio management — An unconventional approach
to institutional investment. New York: The Free Press.
Tobin, J. (1974). What is permanent endowment income? The American Economic
Review , Vol. 64, No.2, Papers and Proceedings of the eighty-sixth Annual meeting
of the American Economic Association , May, 427 – 432.
Windcliff , H. , & Boyle , P. ( 2004 ). The 1/n pension plan puzzle. North American
Actuarial Journal , 9 , 32 – 45.

Free download pdf