Optimizing Optimization: The Next Generation of Optimization Applications and Theory (Quantitative Finance)

(Romina) #1

124 Optimizing Optimization


in equity returns; (2) the time evolution of factor f j (^) , (^) t and of errors e i (^) , (^) t , and (3)
the comovements of the vector of the returns considering the skewness and
kurtosis of the joint distribution.
To deal with the third problem, we suggest employing a skewed copula with
heavy tails. A copula function C associated to random vector υ  ( υ 1 , ... , υ (^) n )
is a probability distribution function on the n- dimensional hypercube, such
that:
Table 5.2 Estimated coefficients
MMM AA AXP T BAC BA CAT
Alpha 0.001%  0.017%  0.004%  0.010% 0.004%  0.005% 0.015%
Beta 1 0.528% 0.600% 0.660% 0.501% 0.522% 0.497% 0.552%
Beta 2  0.061% 0.175% 0.082%  0.189% 0.116% 0.090% 0.172%
Beta 3 0.079% 0.392%  0.137%  0.139%  0.273% 0.146% 0.212%
Beta 4 0.004%  0.122%  0.121% 0.166%  0.359% 0.031%  0.078%
Beta 5 0.182%  0.054%  0.035%  0.310%  0.017% 0.195% 0.080%
Beta 6  0.014% 0.063%  0.026% 0.252% 0.009% 0.031%  0.052%
Beta 7 0.057%  0.202% 0.019%  0.221% 0.074%  0.242%  0.032%
Beta 8  0.083% 0.020% 0.009%  0.068% 0.010% 0.185%  0.043%
Beta 9 0.118%  0.058%  0.028% 0.093% 0.000% 0.114% 0.117%
Beta 10 0.001%  0.194% 0.070%  0.020% 0.057% 0.152%  0.106%
Beta 11 0.118% 0.155% 0.010%  0.026%  0.052%  0.327% 0.148%
Beta 12 0.021% 0.069%  0.107% 0.026%  0.002% 0.004%  0.078%
Beta 13 0.069% 0.058%  0.076% 0.027% 0.093% 0.015%  0.020%
Beta 14 0.128% 0.193% 0.010% 0.033% 0.068%  0.105% 0.097%
HD IBM INTC JNJ JPM KFT MCD
Alpha  0.018%  0.003%  0.012% 0.006% 0.001% 0.001% 0.016%
Beta 1 0.585% 0.444% 0.670% 0.434% 0.646% 0.287% 0.374%
Beta 2 0.121% 0.067% 0.156%  0.324% 0.152%  0.188%  0.020%
Beta 3  0.158% 0.017% 0.050%  0.048%  0.251%  0.135% 0.010%
Beta 4 0.085% 0.184% 0.408% 0.032%  0.239%  0.036% 0.052%
Beta 5 0.172%  0.103%  0.057% 0.060%  0.129% 0.182% 0.196%
Beta 6 0.001%  0.043%  0.043%  0.142% 0.013% 0.330% 0.047%
Beta 7 0.049% 0.092% 0.267% 0.025% 0.076% 0.050%  0.223%
Beta 8  0.209% 0.036% 0.086%  0.025% 0.047% 0.399%  0.185%
Beta 9  0.056%  0.013%  0.045% 0.101%  0.009%  0.124%  0.475%
Beta 10  0.318%  0.040%  0.018% 0.045% 0.072%  0.216% 0.181%
Beta 11  0.191% 0.087% 0.000% 0.148%  0.017% 0.060% 0.027%
Beta 12  0.007%  0.183% 0.056%  0.205%  0.019%  0.150%  0.142%
Beta 13  0.196% 0.066% 0.110% 0.002%  0.007% 0.033% 0.066%
Beta 14 0.008%  0.156%  0.104%  0.183% 0.100% 0.001% 0.001%
Fyυ()( 11 ,...,ynnP y 1 ,...,  yn)(( )( ))CP 1 y 1 ,...,Pnyn

υυ υ υ
CCF y(()υυ 1 1 ,...,F yn())n ,

Free download pdf