Science - USA (2022-04-08)

(Maropa) #1

The 10x Chromium scATAC-seq kit was used
to process PBMCs from five healthy individu-
als incubated for 8 hours with IFNB or culture
media alone. Sequencing data were processed
with CellRanger and demultiplexed with Free-
muxlet. The ArchR package and Scanpy were
used for downstream processing ( 61 ).


REFERENCESANDNOTES



  1. E. E. Carter, S. G. Barr, A. E. Clarke, The global burden of SLE:
    Prevalence, health disparities and socioeconomic impact.
    Nat. Rev. Rheumatol. 12 , 605–620 (2016). doi:10.1038/
    nrrheum.2016.137; pmid: 27558659

  2. A. Kaulet al., Systemic lupus erythematosus.Nat. Rev. Dis.
    Primers 2 , 16039 (2016). doi:10.1038/nrdp.2016.39;
    pmid: 27306639

  3. R. Banchereauet al., Personalized Immunomonitoring
    Uncovers Molecular Networks that Stratify Lupus Patients.Cell
    165 , 551–565 (2016). doi:10.1016/j.cell.2016.03.008;
    pmid: 27040498

  4. J. Benthamet al., Genetic association analyses implicate
    aberrant regulation of innate and adaptive immunity genes
    in the pathogenesis of systemic lupus erythematosus.
    Nat. Genet. 47 , 1457–1464 (2015). doi:10.1038/ng.3434;
    pmid: 26502338

  5. J. Banchereau, V. Pascual, Type I interferon in systemic
    lupus erythematosus and other autoimmune diseases.
    Immunity 25 , 383–392 (2006). doi:10.1016/
    j.immuni.2006.08.010; pmid: 16979570

  6. D. Nehar-Belaidet al., Mapping systemic lupus erythematosus
    heterogeneity at the single-cell level.Nat. Immunol. 21 ,
    1094 – 1106 (2020). doi:10.1038/s41590-020-0743-0;
    pmid: 32747814

  7. S. Sharmaet al., Widely divergent transcriptional patterns
    between SLE patients of different ancestral backgrounds in
    sorted immune cell populations.J. Autoimmun. 60 , 51– 58
    (2015). doi:10.1016/j.jaut.2015.04.002; pmid: 25921064

  8. H. M. Kanget al., Multiplexed droplet single-cell RNA-
    sequencing using natural genetic variation.Nat. Biotechnol. 36 ,
    89 – 94 (2018). doi:10.1038/nbt.4042; pmid: 29227470

  9. C. M. Lanataet al., Genetic contributions to lupus nephritis in a
    multi-ethnic cohort of systemic lupus erythematous patients.
    PLOS ONE 13 , e0199003 (2018). doi:10.1371/journal.
    pone.0199003; pmid: 29953444

  10. T. Rajet al., Polarization of the effects of autoimmune and
    neurodegenerative risk alleles in leukocytes.Science 344 ,
    519 – 523 (2014). doi:10.1126/science.1249547;
    pmid: 24786080

  11. M. N. Leeet al., Common genetic variants modulate pathogen-
    sensing responses in human dendritic cells.Science 343 ,
    1246980 (2014). doi:10.1126/science.1246980;
    pmid: 24604203

  12. C. J. Yeet al., Intersection of population variation and
    autoimmunity genetics in human T cell activation.Science 345 ,
    1254665 (2014). doi:10.1126/science.1254665;
    pmid: 25214635

  13. S. L. Wolock, R. Lopez, A. M. Klein, Scrublet: Computational
    identification of cell Doublets in Single-cell transcriptomic data.
    Cell Syst. 8 , 281–291.e9 (2019). doi:10.1016/
    j.cels.2018.11.005; pmid: 30954476

  14. V. A. Traag, L. Waltman, N. J. van Eck, From Louvain to
    Leiden: Guaranteeing well-connected communities.Sci. Rep. 9 ,
    5233 (2019). doi:10.1038/s41598-019-41695-z;
    pmid: 30914743

  15. L. McInnes, J. Healy, J. Melville, UMAP: Uniform Manifold
    Approximation and Projection for Dimension Reduction. arXiv
    1802.03426 (2018).

  16. Z. Zhuet al., Causal associations between risk factors and
    common diseases inferred from GWAS summary data.
    Nat. Commun. 9 , 224 (2018). doi:10.1038/s41467-
    017-02317-2; pmid: 29335400

  17. C. Bycroftet al., The UK Biobank resource with deep
    phenotyping and genomic data.Nature 562 , 203–209 (2018).
    doi:10.1038/s41586-018-0579-z; pmid: 30305743

  18. V. R. Moultonet al., Pathogenesis of human systemic lupus
    erythematosus: A cellular perspective.Trends Mol. Med. 23 ,
    615 – 635 (2017). doi:10.1016/j.molmed.2017.05.006;
    pmid: 28623084

  19. K. Rubtsova, A. V. Rubtsov, M. P. Cancro, P. Marrack, Age-
    Associated B Cells: A T-bet-Dependent Effector with Roles in
    Protective and Pathogenic Immunity.J. Immunol. 195 ,


1933 – 1937 (2015). doi:10.4049/jimmunol.1501209;
pmid: 26297793


  1. A. Ferraroet al., Interindividual variation in human T regulatory
    cells.Proc. Natl. Acad. Sci. U.S.A. 111 , E1111–E1120 (2014).
    doi:10.1073/pnas.1401343111; pmid: 24610777

  2. Y. Kotliarovet al., Broad immune activation underlies shared
    set point signatures for vaccine responsiveness in healthy
    individuals and disease activity in patients with lupus.Nat.
    Med. 26 , 618–629 (2020). doi:10.1038/s41591-020-0769-8;
    pmid: 32094927

  3. H. Shigematsuet al., Plasmacytoid dendritic cells activate
    lymphoid-specific genetic programs irrespective of their
    cellular origin.Immunity 21 , 43–53 (2004). doi:10.1016/
    j.immuni.2004.06.011; pmid: 15345219

  4. A.-C. Villaniet al., Single-cell RNA-seq reveals new types of
    human blood dendritic cells, monocytes, and progenitors.
    Science 356 , eaah4573 (2017). doi:10.1126/science.aah4573;
    pmid: 28428369

  5. V. Bergen, M. Lange, S. Peidli, F. A. Wolf, F. J. Theis,
    Generalizing RNA velocity to transient cell states through
    dynamical modeling.Nat. Biotechnol. 38 , 1408–1414 (2020).
    doi:10.1038/s41587-020-0591-3; pmid: 32747759

  6. G. La Mannoet al., RNA velocity of single cells.Nature 560 ,
    494 – 498 (2018). doi:10.1038/s41586-018-0414-6;
    pmid: 30089906

  7. J. P. Buyonet al., The effect of combined estrogen and
    progesterone hormone replacement therapy on disease
    activity in systemic lupus erythematosus: A randomized trial.
    Ann. Intern. Med. 142 , 953–962 (2005). doi:10.7326/0003-
    4819-142-12_Part_1-200506210-00004; pmid: 15968009

  8. L. R. Shiowet al., CD69 acts downstream of interferon-a/bto
    inhibit S1P1 and lymphocyte egress from lymphoid organs.
    Nature 440 , 540–544 (2006). doi:10.1038/nature04606;
    pmid: 16525420

  9. B. Han, E. Eskin, Random-effects model aimed at discovering
    associations in meta-analysis of genome-wide association
    studies.Am. J. Hum. Genet. 88 , 586–598 (2011). doi:10.1016/
    j.ajhg.2011.04.014; pmid: 21565292

  10. A. A. Shabalin, Matrix eQTL: Ultra fast eQTL analysis via large
    matrix operations.Bioinformatics 28 , 1353–1358 (2012).
    doi:10.1093/bioinformatics/bts163; pmid: 22492648

  11. J. Yang, S. H. Lee, M. E. Goddard, P. M. Visscher, GCTA: A tool
    for genome-wide complex trait analysis.Am. J. Hum. Genet.
    88 , 76–82 (2011). doi:10.1016/j.ajhg.2010.11.011;
    pmid: 21167468

  12. A. Luet al., Fast and powerful statistical method for context-
    specific QTL mapping in multi-context genomic studies.
    bioRxiv 448889 (2021). doi:10.1101/2021.06.17.448889

  13. D. Calderonet al., Landscape of stimulation-responsive
    chromatin across diverse human immune cells.Nat. Genet. 51 ,
    1494 – 1505 (2019). doi:10.1038/s41588-019-0505-9;
    pmid: 31570894

  14. H. K. Finucaneet al., Heritability enrichment of specifically
    expressed genes identifies disease-relevant tissues and cell
    types.Nat. Genet. 50 , 621–629 (2018). doi:10.1038/s41588-
    018-0081-4; pmid: 29632380

  15. E. Nashi, Y. Wang, B. Diamond, The role of B cells in lupus
    pathogenesis.Int. J. Biochem. Cell Biol. 42 , 543–550 (2010).
    doi:10.1016/j.biocel.2009.10.011; pmid: 19850148

  16. X. Huet al., Integrating autoimmune risk loci with gene-
    expression data identifies specific pathogenic immune cell
    subsets.Am. J. Hum. Genet. 89 , 496–506 (2011). doi:10.1016/
    j.ajhg.2011.09.002; pmid: 21963258

  17. C. Giambartolomeiet al., 0 CommonMind Consortium,
    A Bayesian framework for multiple trait colocalization
    from summary association statistics.Bioinformatics 34 ,
    2538 – 2545 (2018). doi:10.1093/bioinformatics/bty147;
    pmid: 29579179

  18. M. F. Moffattet al., Genetic variants regulating ORMDL3
    expression contribute to the risk of childhood asthma.Nature
    448 , 470–473 (2007). doi:10.1038/nature06014;
    pmid: 17611496

  19. L. Jostinset al., Host-microbe interactions have shaped the
    genetic architecture of inflammatory bowel disease.Nature
    491 , 119–124 (2012). doi:10.1038/nature11582;
    pmid: 23128233

  20. J. C. Barrettet al., Genome-wide association study and meta-
    analysis find that over 40 loci affect risk of type 1 diabetes.
    Nat. Genet. 41 , 703–707 (2009). doi:10.1038/ng.381;
    pmid: 19430480

  21. B. Morganet al., Aiolos, a lymphoid restricted transcription
    factor that interacts with Ikaros to regulate lymphocyte
    differentiation.EMBO J. 16 , 2004–2013 (1997). doi:10.1093/
    emboj/16.8.2004; pmid: 9155026
    41. L. Li, Y. Li, Y. Bai, Role of GSDMB in Pyroptosis and Cancer.
    Cancer Manag. Res. 12 , 3033–3043 (2020). doi:10.2147/
    CMAR.S246948; pmid: 32431546
    42. Y. Zhanget al., The ORMDL3 Asthma Gene Regulates ICAM1
    and Has Multiple Effects on Cellular Inflammation.Am. J.
    Respir. Crit. Care Med. 199 , 478–488 (2019). doi:10.1164/
    rccm.201803-0438OC; pmid: 30339462
    43. B. James, S. Milstien, S. Spiegel, ORMDL3 and allergic asthma:
    From physiology to pathology.J. Allergy Clin. Immunol. 144 ,
    634 – 640 (2019). doi:10.1016/j.jaci.2019.07.023;
    pmid: 31376405
    44. J. Danget al., ORMDL3 facilitates the survival of splenic B cells
    via an ATF6a-endoplasmic reticulum stress-Beclin1 autophagy
    regulatory pathway.J. Immunol. 199 , 1647–1659 (2017).
    doi:10.4049/jimmunol.1602124; pmid: 28747345
    45. J. Yanget al., Conditional and joint multiple-SNP analysis of
    GWAS summary statistics identifies additional variants
    influencing complex traits.Nat. Genet. 44 , 369–375 (2012).
    doi:10.1038/ng.2213; pmid: 22426310
    46. B. J. Schmiedelet al., 17q21 asthma-risk variants switch
    CTCF binding and regulate IL-2 production by T cells.Nat.
    Commun. 7 ,13426(2016).doi:10.1038/ncomms13426;
    pmid: 27848966
    47. M. Thompsonet al., Multi-context genetic modeling of
    transcriptional regulation resolves novel disease loci. bioRxiv
    461579 (2021). doi:10.1101/2021.09.23.461579
    48. C. J. Yeet al., Genetic analysis of isoform usage in the
    human anti-viral response reveals influenza-specific regulation
    ofERAP2transcripts under balancing selection.Genome Res.
    28 , 1812–1825 (2018). doi:10.1101/gr.240390.118;
    pmid: 30446528
    49.J.F.Degneret al., DNase I sensitivity QTLs are a major
    determinant of human expression variation.Nature 482 ,
    390 – 394 (2012). doi:10.1038/nature10808;
    pmid: 22307276
    50. S. J. Rivero, E. Díaz-Jouanen, D. Alarcón-Segovia, Lymphopenia
    in systemic lupus erythematosus: Clinical, diagnostic, and
    prognostic significance.Arthritis Rheum. 21 , 295–305 (1978).
    doi:10.1002/art.1780210302; pmid: 646828
    51. E. F. Morandet al., Trial of anifrolumab in active systemic
    lupus erythematosus.N. Engl. J. Med. 382 , 211–221 (2020).
    doi:10.1056/NEJMoa1912196; pmid: 31851795
    52. M. Cellaet al., Plasmacytoid monocytes migrate to inflamed
    lymph nodes and produce large amounts of type I interferon.
    Nat. Med. 5 , 919–923 (1999). doi:10.1038/11360;
    pmid: 10426316
    53.T.B.Niewoldet al., Age- and sex-related patterns of
    serum interferon-aactivity in lupus families.Arthritis
    Rheum. 58 , 2113–2119 (2008). doi:10.1002/art.23619;
    pmid: 18576315
    54. P. Blancoet al., Increase in activated CD8+T lymphocytes
    expressing perforin and granzyme B correlates with disease
    activity in patients with systemic lupus erythematosus.
    Arthritis Rheum. 52 , 201–211 (2005). doi:10.1002/art.20745;
    pmid: 15641052
    55. L. Casciola-Rosen, F. Andrade, D. Ulanet, W. B. Wong,
    A. Rosen, Cleavage by granzyme B is strongly predictive of
    autoantigen status: Implications for initiation of autoimmunity.
    J. Exp. Med. 190 , 815–826 (1999). doi:10.1084/jem.190.6.815;
    pmid: 10499920
    56. M. Faroudiet al., Lytic versus stimulatory synapse in cytotoxic
    T lymphocyte/target cell interaction: Manifestation of a dual
    activation threshold.Proc. Natl. Acad. Sci. U.S.A. 100 ,
    14145 – 14150 (2003). doi:10.1073/pnas.2334336100;
    pmid: 14610278
    57. C. L. Vanderlugt, S. D. Miller, Epitope spreading in immune-
    mediated diseases: Implications for immunotherapy.Nat. Rev.
    Immunol. 2 , 85–95 (2002). doi:10.1038/nri724;
    pmid: 11910899
    58. F. A. Wolf, P. Angerer, F. J. Theis, SCANPY: Large-scale single-
    cell gene expression data analysis.Genome Biol. 19 , 15 (2018).
    doi:10.1186/s13059-017-1382-0; pmid: 29409532
    59. M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: A
    Bioconductor package for differential expression analysis of
    digital gene expression data.Bioinformatics 26 , 139– 140
    (2010). doi:10.1093/bioinformatics/btp616; pmid: 19910308
    60. J. Chen, E. E. Bardes, B. J. Aronow, A. G. Jegga, ToppGene
    Suite for gene list enrichment analysis and candidate gene
    prioritization.Nucleic Acids Res. 37 , W305–W311 (2009).
    doi:10.1093/nar/gkp427; pmid: 19465376
    61. J. M. Granjaet al., Author Correction: ArchR is a scalable
    software package for integrative single-cell chromatin
    accessibility analysis.Nat. Genet. 53 , 935 (2021). doi:10.1038/
    s41588-021-00850-x; pmid: 33790476


Perezet al.,Science 376 , eabf1970 (2022) 8 April 2022 12 of 13


RESEARCH | RESEARCH ARTICLE

Free download pdf