repertoire of cellular interactions and molecular
signaling pathways that control this key dividing
line in the nervous system. These future studies
will likely also provide additional insights into
the roles of transition zones in response to ner-
vous system injury and regeneration. Finally,
some of the cell types and molecules control-
ling axon guidance at theDrosophilaCNS-PNS
boundary have been uncovered ( 93 – 97 ), and
continued study of this interface in multiple
model organisms, including invertebrates, will
contribute to our understanding of the evolu-
tion of CNS-PNS segregation and connectivity.
REFERENCES AND NOTES
- D. S. Barry, J. M. Pakan, K. W. McDermott, Radial glial cells:
 Key organisers in CNS development.Int. J. Biochem.
 Cell Biol. 46 ,76–79 (2014). doi:10.1016/j.biocel.2013.11.013;
 pmid: 24269781
- X. Liuet al., The superficial glia limitans of mouse and monkey
 brain and spinal cord.Anat. Rec. 296 , 995–1007 (2013).
 doi:10.1002/ar.22717; pmid: 23674345
- D. Ohayonet al., Onset of Spinal Cord Astrocyte Precursor
 Emigration from the Ventricular Zone Involves the Zeb1
 Transcription Factor.Cell Rep. 17 , 1473–1481 (2016).
 doi:10.1016/j.celrep.2016.10.016; pmid: 27806288
- J. P. Fraher, Axon-glial relationships in early CNS-PNS
 transitional zone development: An ultrastructural study.
 J. Neurocytol. 26 ,41–52 (1997). doi:10.1023/
 A:1018511425126; pmid: 9154528
- D. O’Brien, P. Dockery, K. McDermott, J. P. Fraher, The ventral
 motoneurone axon bundle in the CNS—A cordone system?
 J. Neurocytol. 27 , 247–258 (1998). doi:10.1023/
 A:1006932931160; pmid: 10640183
- J. P. Fraher, The CNS-PNS transitional zone of the rat.
 Morphometric studies at cranial and spinal levels.Prog.
 Neurobiol. 38 , 261–316 (1992). doi:10.1016/0301-0082(92)
 90022-7; pmid: 1546164
- P. D. Yurchenco, Basement membranes: Cell scaffoldings and
 signaling platforms.Cold Spring Harb. Perspect. Biol. 3 ,
 a004911 (2011). doi:10.1101/cshperspect.a004911;
 pmid: 21421915
- J. P. Fraher, P. Dockery, O. O’Donoghue, B. Riedewald,
 D. O’Leary, Initial motor axon outgrowth from the developing
 central nervous system.J. Anat. 211 , 600–611 (2007).
 doi:10.1111/j.1469-7580.2007.00807.x; pmid: 17850285
- M. Martins-Green, C. A. Erickson, Development of neural tube
 basal lamina during neurulation and neural crest cell
 emigration in the trunk of the mouse embryo.J. Embryol. Exp.
 Morphol. 98 , 219–236 (1986). pmid: 3655650
- J. A. Siegenthaler, S. J. Pleasure, We have got you‘covered’:
 How the meninges control brain development.Curr. Opin.
 Genet. Dev. 21 , 249–255 (2011). doi:10.1016/
 j.gde.2010.12.005; pmid: 21251809
- G. F. Couly, N. M. Le Douarin, Mapping of the early neural
 primordium in quail-chick chimeras. II. The prosencephalic
 neural plate and neural folds: Implications for the genesis of
 cephalic human congenital abnormalities.Dev. Biol. 120 ,
 198 – 214 (1987). doi:10.1016/0012-1606(87)90118-7;
 pmid: 3817289
- G. F. Couly, P. M. Coltey, N. M. Le Douarin, The developmental
 fate of the cephalic mesoderm in quail-chick chimeras.
 Development 114 ,1–15 (1992). pmid: 1576952
- X. Jiang, S. Iseki, R. E. Maxson, H. M. Sucov, G. M. Morriss-Kay,
 Tissue origins and interactions in the mammalian skull vault.
 Dev. Biol. 241 , 106–116 (2002). doi:10.1006/dbio.2001.0487;
 pmid: 11784098
- Y. Choe, J. A. Siegenthaler, S. J. Pleasure, A cascade of
 morphogenic signaling initiated by the meninges controls
 corpus callosum formation.Neuron 73 , 698–712 (2012).
 doi:10.1016/j.neuron.2011.11.036; pmid: 22365545
- K. Zarbalis, Y. Choe, J. A. Siegenthaler, L. A. Orosco,
 S. J. Pleasure, Meningeal defects alter the tangential
 migration of cortical interneurons in Foxc1hith/hith mice.
 Neural Dev. 7 , 2 (2012). doi:10.1186/1749-8104-7-2;
 pmid: 22248045
- T. A. C. S. Suter, Z. J. DeLoughery, A. Jaworski, Meninges-
 derived cues control axon guidance.Dev. Biol. 430 ,1– 10
 (2017). doi:10.1016/j.ydbio.2017.08.005; pmid: 28784295
 17. J. P. Fraher, D. C. Bristol, High density of nodes of Ranvier in
 the CNS-PNS transitional zone.J. Anat. 170 , 131–137 (1990).
 pmid: 2254159
 18. A. H. Koeppen, A. B. Becker, J. Qian, B. B. Gelman,
 J. E.Mazurkiewicz, Friedreich Ataxia: Developmental Failure of
 the Dorsal Root Entry Zone.J. Neuropathol. Exp. Neurol. 76 ,
 969 – 977 (2017). doi:10.1093/jnen/nlx087; pmid: 29044418
 19. K. J. Radomska, P. Topilko, Boundary cap cells in development
 and disease.Curr. Opin. Neurobiol. 47 , 209–215 (2017).
 doi:10.1016/j.conb.2017.11.003; pmid: 29174469
 20. C. Niederländer, A. Lumsden, Late emigrating neural crest
 cells migrate specifically to the exit points of cranial
 branchiomotor nerves.Development 122 , 2367–2374 (1996).
 pmid: 8756282
 21. J. P. Golding, J. Cohen, Border controls at the mammalian
 spinal cord: Late-surviving neural crest boundary cap cells at
 dorsal root entry sites may regulate sensory afferent ingrowth
 and entry zone morphogenesis.Mol. Cell. Neurosci. 9 , 381– 396
 (1997). doi:10.1006/mcne.1997.0647; pmid: 9361276
 22. F. Coulpieret al., Novel features of boundary cap cells
 revealed by the analysis of newly identified molecular
 markers.Glia 57 , 1450–1457 (2009). doi:10.1002/glia.20862;
 pmid: 19243017
 23. C. J. Smith, A. D. Morris, T. G. Welsh, S. Kucenas, Contact-
 mediated inhibition between oligodendrocyte progenitor cells
 and motor exit point glia establishes the spinal cord transition
 zone.PLOS Biol. 12 , e1001961 (2014). doi:10.1371/journal.
 pbio.1001961; pmid: 25268888
 24. S. Kucenas, W. D. Wang, E. W. Knapik, B. Appel, A selective
 glial barrier at motor axon exit points prevents oligodendrocyte
 migration from the spinal cord.J. Neurosci. 29 , 15187– 15194
 (2009). doi:10.1523/JNEUROSCI.4193-09.2009;
 pmid: 19955371
 25. D. Nayak, T. L. Roth, D. B. McGavern, Microglia development
 and function.Annu. Rev. Immunol. 32 , 367–402 (2014).
 doi:10.1146/annurev-immunol-032713-120240;
 pmid: 24471431
 26. F. Ginhoux, M. Prinz, Origin of microglia: Current concepts and
 past controversies.Cold Spring Harb. Perspect. Biol. 7 ,
 a020537 (2015). doi:10.1101/cshperspect.a020537;
 pmid: 26134003
 27. F.A. Court, L. Wrabetz, M. L. Feltri, Basal lamina: Schwann
 cells wrap to the rhythm of space-time.Curr. Opin. Neurobiol.
 16 , 501–507 (2006). doi:10.1016/j.conb.2006.08.005;
 pmid: 16956757
 28. W. Halfter, J. Yip, An organizing function of basement
 membranes in the developing nervous system.Mech. Dev. 133 ,
 1 – 10 (2014). doi:10.1016/j.mod.2014.07.003; pmid: 25058486
 29. F. Coulpieret al., CNS/PNS boundary transgression by
 central glia in the absence of Schwann cells or Krox20/Egr2
 function.J. Neurosci. 30 , 5958–5967 (2010). doi:10.1523/
 JNEUROSCI.0017-10.2010; pmid: 20427655
 30. I. D. Duncan, R. L. Hoffman, Schwann cell invasion of the
 central nervous system of the myelin mutants.J. Anat. 190 ,
 35 – 49 (1997). doi:10.1046/j.1469-7580.1997.19010035.x;
 pmid: 9034880
 31. J. K. Clarket al., MammalianNkx2.2+perineurial glia are
 essential for motor nerve development.Dev. Dyn. 243 ,
 1116 – 1129 (2014). doi:10.1002/dvdy.24158; pmid: 24979729
 32. S. Kucenaset al., CNS-derived glia ensheath peripheral nerves
 and mediate motor root development.Nat. Neurosci. 11 ,
 143 – 151 (2008). doi:10.1038/nn2025; pmid: 18176560
 33. S. Kucenas, Perineurial glia.Cold Spring Harb. Perspect. Biol. 7 ,
 a020511 (2015). doi:10.1101/cshperspect.a020511;
 pmid: 25818566
 34. C. J. Smith, K. Johnson, T. G. Welsh, M. J. Barresi, S. Kucenas,
 Radial glia inhibit peripheral glial infiltration into the spinal
 cord at motor exit point transition zones.Glia 64 , 1138– 1153
 (2016). doi:10.1002/glia.22987; pmid: 27029762
 35. F. Fröbet al., Establishment of myelinating Schwann cells and
 barrier integrity between central and peripheral nervous
 systems depend on Sox10.Glia 60 , 806–819 (2012).
 doi:10.1002/glia.22310; pmid: 22337526
 36. D. A. Lyonset al., erbb3 and erbb2 are essential for schwann
 cell migration and myelination in zebrafish.Curr. Biol. 15 ,
 513 – 524 (2005). doi:10.1016/j.cub.2005.02.030;
 pmid: 15797019
 37. L. Fontenaset al., The Neuromodulator Adenosine Regulates
 Oligodendrocyte Migration at Motor Exit Point Transition
 Zones.Cell Rep. 27 , 115–128.e5 (2019). doi:10.1016/
 j.celrep.2019.03.013; pmid: 30943395
 38. Y. Zhu, T. Matsumoto, T. Nagasawa, F. Mackay, F. Murakami,
 Chemokine Signaling Controls Integrity of Radial Glial Scaffold
in Developing Spinal Cord and Consequential Proper Position
of Boundary Cap Cells.J. Neurosci. 35 , 9211–9224 (2015).
doi:10.1523/JNEUROSCI.0156-15.2015; pmid: 26085643- T. J. Sims, S. A. Gilmore, Schwann cells can misdirect
 regrowing neuronal processes.Brain Res. 763 ,1 41 – 144 (1997).
 doi:10.1016/S0006-8993(97)00501-5; pmid: 9272840
- S. A. Gilmore, T. J. Sims, J. K. Heard, Autoradiographic and
 ultrastructural studies of areas of spinal cord occupied by
 Schwann cells and Schwann cell myelin.Brain Res. 239 ,
 365 – 375 (1982). doi:10.1016/0006-8993(82)90515-7;
 pmid: 7093696
- T. J. Sims, S. A. Gilmore, Interactions between intraspinal
 Schwann cells and the cellular constituents normally occurring
 in the spinal cord: An ultrastructural study in the irradiated rat.
 Brain Res. 276 ,17–30 (1983). doi:10.1016/0006-8993(83)
 90544-9; pmid: 6626996
- W. F. Blakemore, R. C. Patterson, Observations on the
 interactions of Schwann cells and astrocytes following
 X-irradiation of neonatal rat spinal cord.J. Neurocytol. 4 ,
 573 – 585 (1975). doi:10.1007/BF01351538; pmid: 1177001
- W. F. Blakemore, Invasion of Schwann cells into the spinal cord
 of the rat following local injections of lysolecithin.Neuropathol.
 Appl. Neurobiol. 2 ,21–39 (1976). doi:10.1111/j.1365-
 2990.1976.tb00559.x
- L. Jasmin, G. Janni, T. M. Moallem, D. A. Lappi, P. T. Ohara,
 Schwann cells are removed from the spinal cord after effecting
 recovery from paraplegia.J. Neurosci. 20 , 9215–9223 (2000).
 doi:10.1523/JNEUROSCI.20-24-09215.2000; pmid: 11124999
- N. Chaudhryet al., Myelin-Associated Glycoprotein Inhibits
 Schwann Cell Migration and Induces Their Death.J. Neurosci.
 37 , 5885–5899 (2017). doi:10.1523/JNEUROSCI.1822-16.2017;
 pmid: 28522736
- S. Wray, From nose to brain: Development of gonadotrophin-
 releasing hormone-1 neurones.J. Neuroendocrinol. 22 ,
 743 – 753 (2010). doi:10.1111/j.1365-2826.2010.02034.x;
 pmid: 20646175
- P. E. Forni, S. Wray, GnRH, anosmia and hypogonadotropic
 hypogonadism—Where are we?Front. Neuroendocrinol. 36 ,
 165 – 177 (2015). doi:10.1016/j.yfrne.2014.09.004;
 pmid: 25306902
- V. Pingaultet al., Loss-of-function mutations in SOX10 cause
 Kallmann syndrome with deafness.Am. J. Hum. Genet. 92 ,
 707 – 724 (2013). doi:10.1016/j.ajhg.2013.03.024;
 pmid: 23643381
- A. Cariboniet al., Defective gonadotropin-releasing hormone
 neuron migration in mice lacking SEMA3A signalling through
 NRP1 and NRP2: Implications for the aetiology of
 hypogonadotropic hypogonadism.Hum. Mol. Genet. 20 ,
 336 – 344 (2011). doi:10.1093/hmg/ddq468; pmid: 21059704
- E. Z. M. Taroc, A. Prasad, J. M. Lin, P. E. Forni, The terminal
 nerve plays a prominent role in GnRH-1 neuronal migration
 independent from proper olfactory and vomeronasal
 connections to the olfactory bulbs.Biol. Open 6 , 1552– 1568
 (2017). doi:10.1242/bio.029074; pmid: 28970231
- Y. Toba, J. D. Tiong, Q. Ma, S. Wray, CXCR4/SDF-1 system
 modulates development of GnRH-1 neurons and the olfactory
 system.Dev. Neurobiol. 68 , 487–503 (2008). doi:10.1002/
 dneu.20594; pmid: 18188864
- G. A. Schwarting, T. R. Henion, J. D. Nugent, B. Caplan,
 S. Tobet, Stromal cell-derived factor-1 (chemokine C-X-C motif
 ligand 12) and chemokine C-X-C motif receptor 4 are required
 for migration of gonadotropin-releasing hormone neurons to
 the forebrain.J. Neurosci. 26 , 6834–6840 (2006).
 doi:10.1523/JNEUROSCI.1728-06.2006; pmid: 16793890
- P. Giacobiniet al., Hepatocyte growth factor acts as a motogen
 and guidance signal for gonadotropin hormone-releasing
 hormone-1 neuronal migration.J. Neurosci. 27 , 431– 445
 (2007). doi:10.1523/JNEUROSCI.4979-06.2007;
 pmid: 17215404
- H. Lee, M. R. Song, The structural role of radial glial endfeet in
 confining spinal motor neuron somata is controlled by the
 Reelin and Notch pathways.Exp. Neurol. 249 ,83–94 (2013).
 doi:10.1016/j.expneurol.2013.08.010; pmid: 23988635
- M. Vermerenet al., Integrity of developing spinal motor
 columns isregulated by neural crest derivatives at motor exit
 points.Neuron 37 , 403–415 (2003). doi:10.1016/S0896-6273
 (02)01188-1; pmid: 12575949
- R. Bronet al., Boundary cap cells constrain spinal motor
 neuron somal migration at motor exit points by a semaphorin-
 plexin mechanism.Neural Dev. 2 , 21 (2007). doi:10.1186/1749-
 8104-2-21; pmid: 17971221
- O. Mauti, E. Domanitskaya, I. Andermatt, R. Sadhu,
 E. T. Stoeckli, Semaphorin6A acts as a gate keeper between
Suteret al.,Science 365 , eaaw8231 (2019) 30 August 2019 7of8
RESEARCH | REVIEW
