Cell - 8 September 2016

(Amelia) #1

therapy by a combination of broadly neutralizing antibodies in humanized
mice. Nature 492 , 118–122.
Klein, F., Diskin, R., Scheid, J.F., Gaebler, C., Mouquet, H., Georgiev, I.S., Pan-
cera, M., Zhou, T., Incesu, R.B., Fu, B.Z., et al. (2013a). Somatic mutations of
the immunoglobulin framework are generally required for broad and potent
HIV-1 neutralization. Cell 153 , 126–138.
Klein, F., Mouquet, H., Dosenovic, P., Scheid, J.F., Scharf, L., and Nussenz-
weig, M.C. (2013b). Antibodies in HIV-1 vaccine development and therapy.
Science 341 , 1199–1204.
Klein, F., Nogueira, L., Nishimura, Y., Phad, G., West, A.P., Jr., Halper-Strom-
berg, A., Horwitz, J.A., Gazumyan, A., Liu, C., Eisenreich, T.R., et al. (2014).
Enhanced HIV-1 immunotherapy by commonly arising antibodies that target
virus escape variants. J. Exp. Med. 211 , 2361–2372.
Klinman, D.M., Higgins, K.W., and Conover, J. (1991). Sequential immuniza-
tions with rgp120s from independent isolates of human immunodeficiency vi-
rus type 1 induce the preferential expansion of broadly crossreactive B cells.
J. Exp. Med. 173 , 881–887.
Kong, L., Lee, J.H., Doores, K.J., Murin, C.D., Julien, J.P., McBride, R., Liu, Y.,
Marozsan, A., Cupo, A., Klasse, P.J., et al. (2013). Supersite of immune vulner-
ability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nat.
Struct. Mol. Biol. 20 , 796–803.


Kwong, P.D., Doyle, M.L., Casper, D.J., Cicala, C., Leavitt, S.A., Majeed, S.,
Steenbeke, T.D., Venturi, M., Chaiken, I., Fung, M., et al. (2002). HIV-1 evades
antibody-mediated neutralization through conformational masking of recep-
tor-binding sites. Nature 420 , 678–682.
Kwong, P.D., Mascola, J.R., and Nabel, G.J. (2013). Broadly neutralizing anti-
bodies and the search for an HIV-1 vaccine: the end of the beginning. Nat. Rev.
Immunol. 13 , 693–701.
Li, M.Z., and Elledge, S.J. (2007). Harnessing homologous recombination
in vitro to generate recombinant DNA via SLIC. Nat. Methods 4 , 251–256.
Liao, H.X., Lynch, R., Zhou, T., Gao, F., Alam, S.M., Boyd, S.D., Fire, A.Z., Ros-
kin, K.M., Schramm, C.A., Zhang, Z., et al.; NISC Comparative Sequencing
Program (2013). Co-evolution of a broadly neutralizing HIV-1 antibody and
founder virus. Nature 496 , 469–476.
Malherbe, D.C., Doria-Rose, N.A., Misher, L., Beckett, T., Puryear, W.B.,
Schuman, J.T., Kraft, Z., O’Malley, J., Mori, M., Srivastava, I., et al. (2011).
Sequential immunization with a subtype B HIV-1 envelope quasispecies
partially mimics the in vivo development of neutralizing antibodies. J. Virol.
85 , 5262–5274.
Mascola, J.R., and Haynes, B.F. (2013). HIV-1 neutralizing antibodies: under-
standing nature’s pathways. Immunol. Rev. 254 , 225–244.
Mascola, J.R., Stiegler, G., VanCott, T.C., Katinger, H., Carpenter, C.B., Han-
son, C.E., Beary, H., Hayes, D., Frankel, S.S., Birx, D.L., and Lewis, M.G.
(2000). Protection of macaques against vaginal transmission of a pathogenic
HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat.
Med. 6 , 207–210.
McCoy, L.E., and Weiss, R.A. (2013). Neutralizing antibodies to HIV-1 induced
by immunization. J. Exp. Med. 210 , 209–223.
McGuire, A.T., Hoot, S., Dreyer, A.M., Lippy, A., Stuart, A., Cohen, K.W.,
Jardine, J., Menis, S., Scheid, J.F., West, A.P., et al. (2013). Engineering HIV
envelope protein to activate germline B cell receptors of broadly neutralizing
anti-CD4 binding site antibodies. J. Exp. Med. 210 , 655–663.


Mestas, J., and Hughes, C.C.W. (2004). Of mice and not men: differences
between mouse and human immunology. J. Immunol. 172 , 2731–2738.
Moldt, B., Rakasz, E.G., Schultz, N., Chan-Hui, P.Y., Swiderek, K., Weisgrau,
K.L., Piaskowski, S.M., Bergman, Z., Watkins, D.I., Poignard, P., and Burton,
D.R. (2012). Highly potent HIV-specific antibody neutralization in vitro trans-
lates into effective protection against mucosal SHIV challenge in vivo. Proc.
Natl. Acad. Sci. USA 109 , 18921–18925.


Montefiori, D.C. (2005). Evaluating neutralizing antibodies against HIV, SIV,
and SHIV in luciferase reporter gene assays. Curr. Protoc. Immunol.Chapter
12 , Unit 12.11.


Mouquet, H., Scheid, J.F., Zoller, M.J., Krogsgaard, M., Ott, R.G., Shukair, S.,
Artyomov, M.N., Pietzsch, J., Connors, M., Pereyra, F., et al. (2010). Polyreac-
tivity increases the apparent affinity of anti-HIV antibodies by heteroligation.
Nature 467 , 591–595.
Mouquet, H., Scharf, L., Euler, Z., Liu, Y., Eden, C., Scheid, J.F., Halper-Strom-
berg, A., Gnanapragasam, P.N., Spencer, D.I., Seaman, M.S., et al. (2012).
Complex-type N-glycan recognition by potent broadly neutralizing HIV anti-
bodies. Proc. Natl. Acad. Sci. USA 109 , E3268–E3277.
Pancera, M., McLellan, J.S., Wu, X., Zhu, J., Changela, A., Schmidt, S.D.,
Yang, Y., Zhou, T., Phogat, S., Mascola, J.R., and Kwong, P.D. (2010). Crystal
structure of PG16 and chimeric dissection with somatically related PG9: struc-
ture-function analysis of two quaternary-specific antibodies that effectively
neutralize HIV-1. J. Virol. 84 , 8098–8110.
Pantaleo, G., and Koup, R.A. (2004). Correlates of immune protection in HIV-1
infection: what we know, what we don’t know, what we should know. Nat.
Med. 10 , 806–810.
Pavri, R., and Nussenzweig, M.C. (2011). AID targeting in antibody diversity.
Adv. Immunol. 110 , 1–26.
Pelanda, R., Schwers, S., Sonoda, E., Torres, R.M., Nemazee, D., and Rajew-
sky, K. (1997). Receptor editing in a transgenic mouse model: site, efficiency,
and role in B cell tolerance and antibody diversification. Immunity 7 , 765–775.
Richman, D.D., Wrin, T., Little, S.J., and Petropoulos, C.J. (2003). Rapid evo-
lution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl.
Acad. Sci. USA 100 , 4144–4149.
Sanders, R.W., Derking, R., Cupo, A., Julien, J.P., Yasmeen, A., de Val, N.,
Kim, H.J., Blattner, C., de la Pen ̃a, A.T., Korzun, J., et al. (2013). A next-gener-
ation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses
multiple epitopes for broadly neutralizing but not non-neutralizing antibodies.
PLoS Pathog. 9 , e1003618.
Sanders, R.W., van Gils, M.J., Derking, R., Sok, D., Ketas, T.J., Burger, J.A.,
Ozorowski, G., Cupo, A., Simonich, C., Goo, L., et al. (2015). HIV-1 VACCINES.
HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science
349 , aac4223.
Scheid, J.F., Mouquet, H., Feldhahn, N., Seaman, M.S., Velinzon, K., Pietzsch,
J., Ott, R.G., Anthony, R.M., Zebroski, H., Hurley, A., et al. (2009). Broad diver-
sity of neutralizing antibodies isolated from memory B cells in HIV-infected in-
dividuals. Nature 458 , 636–640.
Scheid, J.F., Mouquet, H., Ueberheide, B., Diskin, R., Klein, F., Oliveira, T.Y.,
Pietzsch, J., Fenyo, D., Abadir, A., Velinzon, K., et al. (2011). Sequence and
structural convergence of broad and potent HIV antibodies that mimic CD4
binding. Science 333 , 1633–1637.
Schiffner, T., Sattentau, Q.J., and Dorrell, L. (2013). Development of prophy-
lactic vaccines against HIV-1. Retrovirology 10 ,72.
Schoofs, T., Klein, F., Braunschweig, M., Kreider, E.F., Feldmann, A.,
Nogueira, L., Oliveira, T., Lorenzi, J.C., Parrish, E.H., Learn, G.H., et al.
(2016). HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune
responses against HIV-1. Science 352 , 997–1001.
Shibata, R., Igarashi, T., Haigwood, N., Buckler-White, A., Ogert, R., Ross, W.,
Willey, R., Cho, M.W., and Martin, M.A. (1999). Neutralizing antibody directed
against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV
chimeric virus infections of macaque monkeys. Nat. Med. 5 , 204–210.
Shih, T.A., Roederer, M., and Nussenzweig, M.C. (2002). Role of antigen
receptor affinity in T cell-independent antibody responses in vivo. Nat. Immu-
nol. 3 , 399–406.
Shingai, M., Nishimura, Y., Klein, F., Mouquet, H., Donau, O.K., Plishka, R.,
Buckler-White, A., Seaman, M., Piatak, M., Jr., Lifson, J.D., et al. (2013). Anti-
body-mediated immunotherapy of macaques chronically infected with SHIV
suppresses viraemia. Nature 503 , 277–280.
Simonich, C.A., Williams, K.L., Verkerke, H.P., Williams, J.A., Nduati, R., Lee,
K.K., and Overbaugh, J. (2016). HIV-1 neutralizing antibodies with limited
hypermutation from an infant. Cell 166 , 77–87.
Sok, D., Laserson, U., Laserson, J., Liu, Y., Vigneault, F., Julien, J.P., Briney,
B., Ramos, A., Saye, K.F., Le, K., et al. (2013). The effects of somatic

Cell 166 , 1445–1458, September 8, 2016 1457
Free download pdf