Cell - 8 September 2016

(Amelia) #1

Despite these advances, we are just beginning to understand
the integral roles played by cellular metabolism in development
and diseases. In light of recent discoveries concerning the
interplay between intermediate metabolism and epigenetics,
the traditional view of metabolism as a developmental byproduct
has largely been refuted. To what extent cellular metabolism is
directly wired to cellular transitions associated with development
and reprograming warrants future investigations.


ACKNOWLEDGMENTS


We sincerely apologize to colleagues whose work has not been included in this
Review due to space limitations. We would like to thank all members of the
J.C.I.B. laboratory for their experimental and conceptual contributions, which
led to some of the ideas presented in this Review. We would like to thank May
Schwarz, David O’Keefe, and Peter Schwarz for critically reading the manu-
script. Work in the laboratory of J.C.I.B. was supported by the G. Harold
and Leila Y. Mathers Charitable Foundation, The Leona M. and Harry B.
Helmsley Charitable Trust (2012-PG-MED002), the Moxie Foundation, the Uni-
versidad Cato ́lica San Antonio de Murcia (UCAM), and Fundacion Pedro
Guillen.


REFERENCES


Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H., Coulson, A.R.,
Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., et al. (1981).
Sequence and organization of the human mitochondrial genome. Nature
290 , 457–465.
Blaschke, K., Ebata, K.T., Karimi, M.M., Zepeda-Martı ́nez,J.A., Goyal, P.,
Mahapatra, S., Tam, A., Laird, D.J., Hirst, M., Rao, A., et al. (2013). Vitamin
C induces Tet-dependent DNA demethylation and a blastocyst-like state in
ES cells. Nature 500 , 222–226.
Brons, I.G.M., Smithers, L.E., Trotter, M.W.B., Rugg-Gunn, P., Sun, B., Chuva
de Sousa Lopes, S.M., Howlett, S.K., Clarkson, A., A ̈hrlund-Richter, L., Peder-
sen, R.A., and Vallier, L. (2007). Derivation of pluripotent epiblast stem cells
from mammalian embryos. Nature 448 , 191–195.
Buehr, M., Meek, S., Blair, K., Yang, J., Ure, J., Silva, J., McLay, R., Hall, J.,
Ying, Q.-L., and Smith, A. (2008). Capture of authentic embryonic stem cells
from rat blastocysts. Cell 135 , 1287–1298.
Carbognin, E., Betto, R.M., Soriano, M.E., Smith, A.G., and Martello, G. (2016).
Stat3 promotes mitochondrial transcription and oxidative respiration during
maintenance and induction of naive pluripotency. EMBO J. 35 , 618–634.
Carey, B.W., Finley, L.W.S., Cross, J.R., Allis, C.D., and Thompson, C.B.
(2015). Intracellulara-ketoglutarate maintains the pluripotency of embryonic
stem cells. Nature 518 , 413–416.
Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M.,
Vrana, J., Jones, K., Grotewold, L., and Smith, A. (2007). Nanog safeguards
pluripotency and mediates germline development. Nature 450 , 1230–1234.
Chan, Y.-S., Go ̈ke, J., Ng, J.-H., Lu, X., Gonzales, K.A.U., Tan, C.-P., Tng,
W.-Q., Hong, Z.-Z., Lim, Y.-S., and Ng, H.-H. (2013). Induction of a human
pluripotent state with distinct regulatory circuitry that resembles preimplanta-
tion epiblast. Cell Stem Cell 13 , 663–675.
Cherry, A.B.C., Gagne, K.E., McLoughlin, E.M., Baccei, A., Gorman, B.,
Hartung, O., Miller, J.D., Zhang, J., Zon, R.L., Ince, T.A., et al. (2013). Induced
pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells 31 , 1287–
1297.
Chung, S., Dzeja, P.P., Faustino, R.S., Perez-Terzic, C., Behfar, A., and Terzic,
A. (2007). Mitochondrial oxidative metabolism is required for the cardiac differ-
entiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4 (1), S60–S67.
Chung, S., Arrell, D.K., Faustino, R.S., Terzic, A., and Dzeja, P.P. (2010). Glyco-
lytic network restructuring integral to the energetics of embryonic stem cell
cardiac differentiation. J. Mol. Cell. Cardiol. 48 , 725–734.


Dudek, J., Cheng, I.-F., Balleininger, M., Vaz, F.M., Streckfuss-Bo ̈meke, K.,
Hu ̈bscher, D., Vukotic, M., Wanders, R.J.A., Rehling, P., and Guan, K.
(2013). Cardiolipin deficiency affects respiratory chain function and organiza-
tion in an induced pluripotent stem cell model of Barth syndrome. Stem Cell
Res. (Amst.) 11 , 806–819.
Duggal, G., Warrier, S., Ghimire, S., Broekaert, D., Van der Jeught, M.,
Lierman, S., Deroo, T., Peelman, L., Van Soom, A., Cornelissen, R., et al.
(2015). Alternative routes to induce naı ̈ve pluripotency in human embryonic
stem cells. Stem Cells 33 , 2686–2698.
Dyall, S.D., Brown, M.T., and Johnson, P.J. (2004). Ancient invasions: from
endosymbionts to organelles. Science 304 , 253–257.
Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripoten-
tial cells from mouse embryos. Nature 292 , 154–156.
Facucho-Oliveira, J.M., Alderson, J., Spikings, E.C., Egginton, S., and St John,
J.C. (2007). Mitochondrial DNA replication during differentiation of murine
embryonic stem cells. J. Cell Sci. 120 , 4025–4034.
Folmes, C.D.L., Dzeja, P.P., Nelson, T.J., and Terzic, A. (2012). Metabolic plas-
ticity in stem cell homeostasis and differentiation. Cell Stem Cell 11 , 596–606.
Folmes, C.D.L., Martinez-Fernandez, A., Perales-Clemente, E., Li, X.,
McDonald, A., Oglesbee, D., Hrstka, S.C., Perez-Terzic, C., Terzic, A., and
Nelson, T.J. (2013). Disease-causing mitochondrial heteroplasmy segregated
within induced pluripotent stem cell clones derived from a patient with MELAS.
Stem Cells 31 , 1298–1308.
Folmes, C.D.L., Nelson, T.J., Martinez-Fernandez, A., Arrell, D.K., Lindor, J.Z.,
Dzeja, P.P., Ikeda, Y., Perez-Terzic, C., and Terzic, A. (2011). Somatic
oxidative bioenergetics transitions into pluripotency-dependent glycolysis to
facilitate nuclear reprogramming. Cell Metab. 14 , 264–271.
Fujikura, J., Nakao, K., Sone, M., Noguchi, M., Mori, E., Naito, M., Taura, D.,
Harada-Shiba, M., Kishimoto, I., Watanabe, A., et al. (2012). Induced pluripo-
tent stem cells generated from diabetic patients with mitochondrial DNA
A3243G mutation. Diabetologia 55 , 1689–1698.
Gafni, O., Weinberger, L., Mansour, A.A., Manor, Y.S., Chomsky, E., Ben-Yo-
sef, D., Kalma, Y., Viukov, S., Maza, I., Zviran, A., et al. (2013). Derivation of
novel human ground state naive pluripotent stem cells. Nature 504 , 282–286.
Guo, G., von Meyenn, F., Santos, F., Chen, Y., and Reik, W. (2016). Naive
pluripotent stem cells derived directly from isolated cells of the human inner
cell mass. Stem Cell Reports 6 , 437–446.
Haas, R.H., Parikh, S., Falk, M.J., Saneto, R.P., Wolf, N.I., Darin, N., and
Cohen, B.H. (2007). Mitochondrial disease: a practical approach for primary
care physicians. Pediatrics 120 , 1326–1333.
Hackett, J.A., and Surani, M.A. (2014). Regulatory principles of pluripotency:
from the ground state up. Cell Stem Cell 15 , 416–430.
Ha ̈ma ̈la ̈inen, R.H., Manninen, T., Koivuma ̈ki, H., Kislin, M., Otonkoski, T., and
Suomalainen, A. (2013). Tissue- and cell-type-specific manifestations of heter-
oplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-
derived disease model. Proc. Natl. Acad. Sci. USA 110 , E3622–E3630.
Hamanaka, R.B., Glasauer, A., Hoover, P., Yang, S., Blatt, H., Mullen, A.R.,
Getsios, S., Gottardi, C.J., DeBerardinis, R.J., Lavker, R.M., and Chandel,
N.S. (2013). Mitochondrial reactive oxygen species promote epidermal differ-
entiation and hair follicle development. Sci. Signal. 6 , ra8–ra8.
Hashem, S.I., Perry, C.N., Bauer, M., Han, S., Clegg, S.D., Ouyang, K.,
Deacon, D.C., Spinharney, M., Panopoulos, A.D., Izpisua Belmonte, J.C.,
et al. (2015). Brief report: oxidative stress mediates cardiomyocyte apoptosis
in a human model of Danon disease and heart failure. Stem Cells 33 , 2343–
2350.
Hatakeyama, H., Katayama, A., Komaki, H., Nishino, I., and Goto, Y. (2015).
Molecular pathomechanisms and cell-type-specific disease phenotypes of
MELAS caused by mutant mitochondrial tRNA(Trp). Acta Neuropathol. Com-
mun. 3 ,52.
Hayashi, K., and Surani, M.A. (2009). Resetting the epigenome beyond plurip-
otency in the germline. Cell Stem Cell 4 , 493–498.

1382 Cell 166 , September 8, 2016

Free download pdf