Cell - 8 September 2016

(Amelia) #1

Ryall, J.G., Cliff, T., Dalton, S., and Sartorelli, V. (2015). Metabolic reprogram-
ming of stem cell epigenetics. Cell Stem Cell 17 , 651–662.
Scognamiglio, R., Cabezas-Wallscheid, N., Thier, M.C., Altamura, S., Reyes,
A., Prendergast, A ́.M., Baumga ̈rtner, D., Carnevalli, L.S., Atzberger, A.,
Haas, S., et al. (2016). Myc depletion induces a pluripotent dormant state
mimicking diapause. Cell 164 , 668–680.
Shiraki, N., Shiraki, Y., Tsuyama, T., Obata, F., Miura, M., Nagae, G., Abura-
tani, H., Kume, K., Endo, F., and Kume, S. (2014). Methionine metabolism
regulates maintenance and differentiation of human pluripotent stem cells.
Cell Metab. 19 , 780–794.
Shoubridge, E.A., and Wai, T. (2007). Mitochondrial DNA and the mammalian
oocyte. Curr. Top. Dev. Biol. 77 , 87–111.
Shyh-Chang, N., Locasale, J.W., Lyssiotis, C.A., Zheng, Y., Teo, R.Y., Ratana-
sirintrawoot, S., Zhang, J., Onder, T., Unternaehrer, J.J., Zhu, H., et al. (2013).
Influence of threonine metabolism on S-adenosylmethionine and histone
methylation. Science 339 , 222–226.
Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J., Stahl, M.,
and Rogers, D. (1988). Inhibition of pluripotential embryonic stem cell differen-
tiation by purified polypeptides. Nature 336 , 688–690.
Son, M.J., Jeong, B.R., Kwon, Y., and Cho, Y.S. (2013). Interference with the
mitochondrial bioenergetics fuels reprogramming to pluripotency via facilita-
tion of the glycolytic transition. Int. J. Biochem. Cell Biol. 45 , 2512–2518.
Son, M.J., Kwon, Y., Son, M.-Y., Seol, B., Choi, H.-S., Ryu, S.-W., Choi, C.,
and Cho, Y.S. (2015). Mitofusins deficiency elicits mitochondrial metabolic re-
programming to pluripotency. Cell Death Differ. 22 , 1957–1969.
Sperber, H., Mathieu, J., Wang, Y., Ferreccio, A., Hesson, J., Xu, Z., Fischer,
K.A., Devi, A., Detraux, D., Gu, H., et al. (2015). The metabolome regulates
the epigenetic landscape during naive-to-primed human embryonic stem
cell transition. Nat. Cell Biol. 17 , 1523–1535.
Suhr, S.T., Chang, E.A., Tjong, J., Alcasid, N., Perkins, G.A., Goissis, M.D., El-
lisman, M.H., Perez, G.I., and Cibelli, J.B. (2010). Mitochondrial rejuvenation
after induced pluripotency. PLoS ONE 5 , e14095.
Tachibana, M., Amato, P., Sparman, M., Gutierrez, N.M., Tippner-Hedges, R.,
Ma, H., Kang, E., Fulati, A., Lee, H.-S., Sritanaudomchai, H., et al. (2013). Hu-
man embryonic stem cells derived by somatic cell nuclear transfer. Cell 153 ,
1228–1238.
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells
from mouse embryonic and adult fibroblast cultures by defined factors. Cell
126 , 663–676.
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K.,
and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human
fibroblasts by defined factors. Cell 131 , 861–872.
Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D.,
Santos, F., Clarke, J., Mansfield, W., et al. (2014). Resetting transcription factor
control circuitry toward ground-state pluripotency in human. Cell 158 , 1254–
1269.
Taylor, R.W., and Turnbull, D.M. (2005). Mitochondrial DNA mutations in hu-
man disease. Nat. Rev. Genet. 6 , 389–402.
Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack,
D.L., Gardner, R.L., and McKay, R.D.G. (2007). New cell lines from mouse
epiblast share defining features with human embryonic stem cells. Nature
448 , 196–199.
Theunissen, T.W., Powell, B.E., Wang, H., Mitalipova, M., Faddah, D.A.,
Reddy, J., Fan, Z.P., Maetzel, D., Ganz, K., Shi, L., et al. (2014). Systematic
identification of culture conditions for induction and maintenance of naive hu-
man pluripotency. Cell Stem Cell 15 , 471–487.
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J.,
Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from
human blastocysts. Science 282 , 1145–1147.
Tohyama, S., Hattori, F., Sano, M., Hishiki, T., Nagahata, Y., Matsuura, T., Ha-
shimoto, H., Suzuki, T., Yamashita, H., Satoh, Y., et al. (2013). Distinct meta-
bolic flow enables large-scale purification of mouse and human pluripotent
stem cell-derived cardiomyocytes. Cell Stem Cell 12 , 127–137.


Tohyama, S., Fujita, J., Hishiki, T., Matsuura, T., Hattori, F., Ohno, R., Kana-
zawa, H., Seki, T., Nakajima, K., Kishino, Y., et al. (2016). Glutamine oxidation
is indispensable for survival of human pluripotent stem cells. Cell Metab. 23 ,
663–674.
Tormos, K.V., Anso, E., Hamanaka, R.B., Eisenbart, J., Joseph, J., Kalyanara-
man, B., and Chandel, N.S. (2011). Mitochondrial complex III ROS regulate
adipocyte differentiation. Cell Metab. 14 , 537–544.
Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K., Niwa, H., Murakami,
K., Takahashi, K., Takahashi, K., Niwa, H., and Niwa, H. (2008). Identification
and characterization of subpopulations in undifferentiated ES cell culture.
Development 135 , 909–918.
Trounce, I.A., and Pinkert, C.A. (2007). Cybrid models of mtDNA disease and
transmission, from cells to mice. Curr. Top. Dev. Biol. 77 , 157–183.
Van Blerkom, J. (2009). Mitochondria in early mammalian development.
Semin. Cell Dev. Biol. 20 , 354–364.
Varum, S., Rodrigues, A.S., Moura, M.B., Momcilovic, O., Easley, C.A., 4th,
Ramalho-Santos, J., Van Houten, B., and Schatten, G. (2011). Energy meta-
bolism in human pluripotent stem cells and their differentiated counterparts.
PLoS ONE 6 , e20914.
Vazquez-Martin, A., Cufi, S., Corominas-Faja, B., Oliveras-Ferraros, C., Vellon,
L., and Menendez, J.A. (2012). Mitochondrial fusion by pharmacological
manipulation impedes somatic cell reprogramming to pluripotency: new
insight into the role of mitophagy in cell stemness. Aging (Albany, N.Y. Online)
4 , 393–401.
Vazquez-Martin, A., Corominas-Faja, B., Cufi, S., Vellon, L., Oliveras-Ferraros,
C., Menendez, O.J., Joven, J., Lupu, R., and Menendez, J.A. (2013). The mito-
chondrial H(+)-ATP synthase and the lipogenic switch: new core components
of metabolic reprogramming in induced pluripotent stem (iPS) cells. Cell Cycle
12 , 207–218.
Vozza, A., Parisi, G., De Leonardis, F., Lasorsa, F.M., Castegna, A., Amorese,
D., Marmo, R., Calcagnile, V.M., Palmieri, L., Ricquier, D., et al. (2014). UCP2
transports C4 metabolites out of mitochondria, regulating glucose and gluta-
mine oxidation. Proc. Natl. Acad. Sci. USA 111 , 960–965.
Wang, J., Alexander, P., Wu, L., Hammer, R., Cleaver, O., and McKnight, S.L.
(2009). Dependence of mouse embryonic stem cells on threonine catabolism.
Science 325 , 435–439.
Wang, J., Xie, G., Singh, M., Ghanbarian, A.T., Rasko ́, T., Szvetnik, A., Cai, H.,
Besser, D., Prigione, A., Fuchs, N.V., et al. (2014a). Primate-specific endoge-
nous retrovirus-driven transcription defines naive-like stem cells. Nature 516 ,
405–409.
Wang, G., McCain, M.L., Yang, L., He, A., Pasqualini, F.S., Agarwal, A., Yuan,
H., Jiang, D., Zhang, D., Zangi, L., et al. (2014b). Modeling the mitochondrial
cardiomyopathy of Barth syndrome with induced pluripotent stem cell and
heart-on-chip technologies. Nat. Med. 20 , 616–623.
Warburg, O. (1956). On the origin of cancer cells. Science 123 , 309–314.
Ware, C.B., Nelson, A.M., Mecham, B., Hesson, J., Zhou, W., Jonlin, E.C., Ji-
menez-Caliani, A.J., Deng, X., Cavanaugh, C., Cook, S., et al. (2014). Deriva-
tion of naive human embryonic stem cells. Proc. Natl. Acad. Sci. USA 111 ,
4484–4489.
Williams, R.L., Hilton, D.J., Pease, S., Willson, T.A., Stewart, C.L., Gearing,
D.P., Wagner, E.F., Metcalf, D., Nicola, N.A., and Gough, N.M. (1988). Myeloid
leukaemia inhibitory factor maintains the developmental potential of embry-
onic stem cells. Nature 336 , 684–687. Published online December 15, 1988.
http://dx.doi.org/10.1038/336684a0.
Wu, J., and Izpisua Belmonte, J.C. (2015a). Dynamic pluripotent stem cell
states and their applications. Cell Stem Cell 17 , 509–525.
Wu, J., and Izpisua Belmonte, J.C. (2015b). Metabolic exit from naive pluripo-
tency. Nat. Cell Biol. 17 , 1519–1521.
Wu, J., and Izpisua Belmonte, J.C. (2016). Stem cells: a renaissance in human
biology research. Cell 165 , 1572–1585.
Wu, J., Okamura, D., Li, M., Suzuki, K., Luo, C., Ma, L., He, Y., Li, Z., Benner,
C., Tamura, I., et al. (2015). An alternative pluripotent state confers interspecies
chimaeric competency. Nature 521 , 316–321.

1384 Cell 166 , September 8, 2016

Free download pdf