Cell - 8 September 2016

(Amelia) #1

Oleksyk, T.K., Smith, M.W., and O’Brien, S.J. (2010). Genome-wide scans for
footprints of natural selection. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365 ,
185–205.
Otto, S.P. (2007). The evolutionary consequences of polyploidy. Cell 131 ,
452–462.
Palmer, A.C., and Kishony, R. (2013). Understanding, predicting and manipu-
lating the genotypic evolution of antibiotic resistance. Nat. Rev. Genet. 14 ,
243–248.
Parts, L., Cubillos, F.A., Warringer, J., Jain, K., Salinas, F., Bumpstead, S.J.,
Molin, M., Zia, A., Simpson, J.T., Quail, M.A., et al. (2011). Revealing the ge-
netic structure of a trait by sequencing a population under selection. Genome
Res. 21 , 1131–1138.
Pennings, P.S. (2012). Standing genetic variation and the evolution of drug
resistance in HIV. PLoS Comput. Biol. 8 , e1002527.
Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26 , 841–842.
Rich, M.S., Payen, C., Rubin, A.F., Ong, G.T., Sanchez, M.R., Yachie, N., Dun-
ham, M.J., and Fields, S. (2016). Comprehensive analysis of theSUL1pro-
moter ofSaccharomyces cerevisiae. Genetics 203 , 191–202.
Shortle, D., Novick, P., and Botstein, D. (1984). Construction and genetic char-
acterization of temperature-sensitive mutant alleles of the yeast actin gene.
Proc. Natl. Acad. Sci. USA 81 , 4889–4893.
Sliwa, P., and Korona, R. (2005). Loss of dispensable genes is not adaptive in
yeast. Proc. Natl. Acad. Sci. USA 102 , 17670–17674.
Soulebeau, A., Aubriot, X., Gaudeul, M., Rouhan, G., Hennequin, S., Haever-
mans, T., Dubuisson, J., and Jabbour, F. (2015). The hypothesis of adaptive
radiation in evolutionary biology: hard facts about a hazy concept. Org. Divers.
Evol. 15 , 747–761.
Stinchcombe, J.R., and Hoekstra, H.E. (2008). Combining population geno-
mics and quantitative genetics: finding the genes underlying ecologically
important traits. Heredity 100 , 158–170.


Tenaillon, O., Rodrı ́guez-Verdugo, A., Gaut, R.L., McDonald, P., Bennett, A.F.,
Long, A.D., and Gaut, B.S. (2012). The molecular diversity of adaptive conver-
gence. Science 335 , 457–461.
Toprak, E., Veres, A., Michel, J.-B., Chait, R., Hartl, D.L., and Kishony, R.
(2011). Evolutionary paths to antibiotic resistance under dynamically sustained
drug selection. Nat. Genet. 44 , 101–105.
Upshall, A., Giddings, B., and Mortimore, I.D. (1977). The Use of Benlate for
Distinguishing Between Haploid and Diploid Strains ofAspergillus nidulans
andAspergillus terreus. J. Gen. Microbiol. 100 , 413–418.
Vitti, J.J., Grossman, S.R., and Sabeti, P.C. (2013). Detecting natural selection
in genomic data. Annu. Rev. Genet. 47 , 97–120.
Voordeckers, K., and Verstrepen, K.J. (2015). Experimental evolution of the
model eukaryoteSaccharomyces cerevisiaeyields insight into the molecular
mechanisms underlying adaptation. Curr. Opin. Microbiol. 28 , 1–9.
Warringer, J., Zo ̈rgo ̈, E., Cubillos, F.A., Zia, A., Gjuvsland, A., Simpson, J.T.,
Forsmark, A., Durbin, R., Omholt, S.W., Louis, E.J., et al. (2011). Trait variation
in yeast is defined by population history. PLoS Genet. 7 , e1002111.
Weinreich, D.M., Delaney, N.F., Depristo, M.A., and Hartl, D.L. (2006).
Darwinian evolution can follow only very few mutational paths to fitter proteins.
Science 312 , 111–114.
Wenger, J.W., Piotrowski, J., Nagarajan, S., Chiotti, K., Sherlock, G., and
Rosenzweig, F. (2011). Hunger artists: yeast adapted to carbon limitation
show trade-offs under carbon sufficiency. PLoS Genet. 7 , e1002202.
Zeyl, C., Vanderford, T., and Carter, M. (2003). An evolutionary advantage of
haploidy in large yeast populations. Science 299 , 555–558.
Zo ̈rgo ̈, E., Chwialkowska, K., Gjuvsland, A.B., Garre ́, E., Sunnerhagen, P., Liti,
G., Blomberg, A., Omholt, S.W., and Warringer, J. (2013). Ancient evolutionary
trade-offs between yeast ploidy states. PLoS Genet. 9 , e1003388.

1596 Cell 167 , 1585–1596, September 8, 2016

Free download pdf