Science - USA (2022-04-15)

(Maropa) #1

  1. T. Knecht, S. Mondal, J.-H. Ye, M. Das, F. Glorius,Angew.
    Chem. Int. Ed. 58 , 7117–7121 (2019).

  2. E. T. Hennessy, R. Y. Liu, D. A. Iovan, R. A. Duncan, T. A. Betley,
    Chem. Sci. 5 , 1526–1532 (2014).

  3. J. Rodrigalvarezet al.,Nat. Chem. 12 , 76–81 (2020).

  4. J. J. Topczewski, P. J. Cabrera, N. I. Saper, M. S. Sanford,
    Nature 531 , 220–224 (2016).

  5. I. P. Beletskaya, A. V. Cheprakov,Chem. Rev. 100 , 3009–3066 (2000).

  6. C. W. Murray, D. C. Rees,Nat. Chem. 1 , 187–192 (2009).

  7. I. B. Perryet al.,Nature 560 , 70–75 (2018).

  8. D. M. Knapp, E. P. Gillis, M. D. Burke,J. Am. Chem. Soc. 131 ,
    6961 – 6963 (2009).

  9. J. M. Dennis, N. A. White, R. Y. Liu, S. L. Buchwald,ACS Catal.
    9 , 3822–3830 (2019).

  10. J. M. Howell, K. Feng, J. R. Clark, L. J. Trzepkowski, M. C. White,
    J. Am. Chem. Soc. 137 , 14590–14593 (2015).

  11. M. Lee, M. S. Sanford,J. Am. Chem. Soc. 137 , 12796–12799 (2015).

  12. M. Ferrer, F. Sánchez-Baeza, A. Messeguer, A. Diez, M. Rubiralta,
    J. Chem. Soc. Chem. Commun. 1995 , 293−294 (1995).

  13. J. F. Brown Jr.,J. Am. Chem. Soc. 74 , 1219–1221 (1952).

  14. R. E. Smith, C. H. Smith,J. Appl. Polym. Sci. 31 , 929–939 (1986).

  15. P. Chabanne, L. Tighzert, J.-P. Pascault, B. Bonnetot,
    J. Appl. Polym. Sci. 49 , 685–699 (1993).

  16. T.J.Osberger,M.C.White,J. Am. Chem. Soc. 136 , 11176–11181 (2014).

  17. S. Wagaw, R. A. Rennels, S. L. Buchwald,J. Am. Chem. Soc.
    119 , 8451–8458 (1997).

  18. Y. He, H. Song, J. Chen, S. Zhu,Nat. Commun. 12 , 638 (2021).

  19. R. N. Shakhmaev, A. Sh. Sunagatullina, V. V. Zorin,Russ.
    J. Org. Chem. 53 , 832–835 (2017).

  20. D. R. Jensen, J. S. Pugsley, M. S. Sigman,J. Am. Chem. Soc.
    123 , 7475–7576 (2001).

  21. C. A. Discolo, A. G. Graves, D. R. Deardorff,J. Org. Chem. 82 ,
    1034 – 1045 (2017).

  22. S. Niet al.,J. Med. Chem. 60 , 8145–8159 (2017).

  23. J. Ammenn, J. R. Gillig, L. J. Heinz, P. A. Hipskind, M. D. Kinnick,
    Y.-S. Lai, J. M. Morin Jr., J. A. Nixon, C. Ott, K. A. Savin,
    T. Schotten, L. J. Slieker, N. J. Snyder, M. A. Robertson,
    “Multicyclic compounds for use as melanin concentrating
    hormone antagonists in the treatment of obesity and diabetes,”
    International Patent WO 2003/097047 A1 (2003).

  24. T. Heinrichet al.,J. Med. Chem. 47 , 4684–4692 (2004).

  25. H. Yamashita, J. Matsubara, K. Oshima, H. Kuroda, N. Ito,
    S. Miyamura, S. Shimizu, T. Tanaka, H. Takahashi,“Piperazine-
    substituted benzothiophenes for treatment of mental
    disorders,”International Patent WO 2006/112464 A1 (2006).

  26. T.-M. Tanget al.,Org. Chem. Front. 8 , 3867–3875 (2021).

  27. E. N. Parkeret al.,Nat. Microbiol. 5 , 67–75 (2020).


ACKNOWLEDGMENTS
We thank P. J. Hergenrother and E. Parker for helpful discussions
on Debio-1452; S. E. Denmark for helpful discussions on the
mechanism; L. Zhu for assistance with quantitative^1 H NMR
analyses; the Fout laboratory for use of their GC-MS; and H. Shade
for checking the procedure in Fig. 2, molecule 22 .Funding:
Financial support for this work was provided by the NIH National
Institute of General Medical Sciences (R35 GM122525). M.C.W.
and S.Z.A. acknowledge the NIH (R01AI 136773-01) for support
to evaluate Debio-1452 derivatives. The Bruker 500-Mz NMR
spectrometer was obtained with the financial support of the
Roy J. Carver Charitable Trust, Muscatine, IA, USA.Author
contributions:S.Z.A. and M.C.W. conceived of the work. J.A.G.
performed preliminary experiments. S.Z.A., B.G.B., D.F.A.F., A.L.P.,
and M.C.W. designed the experiments. S.Z.A., B.G.B., D.F.A.F.,
and A.L.P. performed and analyzed the experiments. S.Z.A., B.G.B.,
D.F.A.F., and M.C.W. wrote the manuscript.Competing interests:
The University of Illinois has a patent (US 10,266,503 B1) on
sulfoxide-oxazoline ligands for Pd(II)-catalyzed allylic C–H
functionalizations. The authors declare no other competing
interests.Data and materials availability:All data are available
in the main text or the supplementary materials. Correspondence
and requests for materials should be addressed to M.C.W.
([email protected]).


SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abn8382
Materials and Methods
Figs. S1 to S13
Tables S1 and S2
NMR Spectra
References ( 46 – 72 )


22 December 2021; accepted 11 March 2022
10.1126/science.abn8382


NATURAL HAZARDS

Citizen seismology helps decipher the 2021


Haiti earthquake


E. Calais1,2,3,4*, S. Symithe3,5, T. Monfret2,3,6, B. Delouis2,3, A. Lomax^7 , F. Courboulex2,3,
J. P. Ampuero2,3, P. E. Lara2,8, Q. Bletery2,3, J. Chèze2,3,F.Peix2,3, A. Deschamps2,3,
B. de Lépinay2,3, B. Raimbault^1 , R. Jolivet1,4, S. Paul2,3,5, S. St Fleur3,5, D. Boisson3,5,
Y. Fukushima^9 , Z. Duputel^10 ,L.Xu^11 , L. Meng^11

On 14 August 2021, the moment magnitude (Mw) 7.2 Nippes earthquake in Haiti occurred within the
same fault zone as its devastating 2010Mw7.0 predecessor, but struck the country when field access
was limited by insecurity and conventional seismometers from the national network were inoperative.
A network of citizen seismometers installed in 2019 provided near-field data critical to rapidly
understand the mechanism of the mainshock and monitor its aftershock sequence. Their real-time
data defined two aftershock clusters that coincide with two areas of coseismic slip derived from
inversions of conventional seismological and geodetic data. Machine learning applied to data from the
citizen seismometer closest to the mainshock allows us to forecast aftershocks as accurately as with the
network-derived catalog. This shows the utility of citizen science contributing to our understanding of
a major earthquake.

O


n 14 August 2021, a moment magnitude
(Mw) 7.2 earthquake struck the south-
ern peninsula of Haiti (Fig. 1A), leaving
~2500 people dead, 13,000 injured, at
least 140,000 houses destroyed or dam-
aged, and a number of water, sanitation, and
health facilities severely affected ( 1 ). Because
the earthquake affected an area that is most-
ly rural, with low population density, its im-
pact was much lower than the smaller but
devastating 12 January 2010Mw7.0 Haiti
event ( 2 – 4 ). Most of the damage and casualties
were concentrated in the populated cities of
Les Cayes and Jérémie (Fig. 1B), but hard-to-
reach rural communities also took a hit, in a
context aggravated by the tropical storm that
followed the event and chronic insecurity com-
plicating field access from the capital city. In
spite of these difficulties, and in the absence
of an operational national network of con-
ventional seismic stations, nearby seismologi-
cal data were readily available during and
after the earthquake because of a citizen seis-
mology effort using inexpensive and low-

maintenance“Raspberry Shake”(RS) seismic
stations hosted by volunteers ( 5 – 7 ) (Fig. 1) [see
(8), section 1]. This project had two original
goals. The first was to install simple but scien-
tifically useful seismological sensors in the
homes of citizens to improve the dissemina-
tion of seismological information to the public,
increase earthquake awareness, and promote
grassroots protection initiatives ( 8 ). The sec-
ond goal was to complement the national
broadband seismological network, a high-
technology system difficult to operate and
maintain in a development context with a
chronic lack of state resources. This citizen-
based seismic network bears similarities to
the Quake Catcher and Community Seismic
networks deployed in California ( 9 , 10 ), al-
though these use accelerometers only and
are deployed in a region already well cov-
ered with conventional seismic stations. The
14 August 2021 earthquake and its aftershock
sequence are an important test of the applica-
bility of low-cost, citizen-hosted seismometers
to provide scientifically relevant data for rapid
response to a major earthquake.
The 2021 Nippes earthquake occurred with-
in the Caribbean–North American plate
boundary (Fig. 1A), where the two plates are
converging obliquely at a speed of ~2 cm/year
( 11 ). The convergence component of plate mo-
tion is accommodated by the underthrusting
of the North American oceanic lithosphere
along the Puerto Rico Trench–North Hispaniola
Fault, and the left-lateral component is accom-
modated by the Septentrional and Enriquillo
strike-slip fault zones ( 12 – 14 ). The Enriquillo
fault zone is considered the source of at least
three major historical earthquakes occurring
in 1701 [intensity magnitude (MI) 6.6], 1751 (MI
7.4), and 1770 (MI7.5) and a fourth, smaller
earthquake in 1860 withMI6.3 ( 15 , 16 ) (Fig. 1A).

SCIENCEscience.org 15 APRIL 2022•VOL 376 ISSUE 6590 283


(^1) Département de Géosciences, École Normale Supérieure,
CNRS UMR 8538, PSL Université, Paris, France.^2 Université
Côte d’Azur, Institut de Recherche pour le Développement,
Centre National de la Recherche Scientifique, Observatoire
de la Côte d’Azur, Géoazur, Valbonne, France.^3 CARIBACT
Joint Research Laboratory, Université d’État d’Haïti,
Université Côte d’Azur, Institut de Recherche pour le
Développement, Port-au-Prince, Haïti.^4 Institut Universitaire
de France, Paris, France.^5 URGéo, Faculté des Sciences,
Université d’État d’Haïti, Port-au-Prince, Haïti.^6 Barcelona
Center for Subsurface Imaging, Institut de Ciències del Mar
(ICM), CSIC, Barcelona, Spain.^7 ALomax Scientific, Mouans
Sartoux, France.^8 Instituto Geofísico del Perú, Lima, Perú.
(^9) International Research Institute of Disaster Science, Tohoku
University, Sendai, Japan.^10 Observatoire Volcanologique du
Piton de la Fournaise, Université de Paris, Institut de
Physique du Globe de Paris, CNRS, Paris, France.
(^11) Department of Earth, Planetary and Space Sciences,
University of California, Los Angeles, CA, USA.
*Corresponding author. Email: [email protected]
RESEARCH | REPORTS

Free download pdf