Science - USA (2022-04-15)

(Maropa) #1

  1. B. S. Ripley, J. Cunniff, C. P. Osborne, Photosynthetic
    acclimation and resource use by the C 3 and C 4 subspecies
    ofAlloteropsis semialatain low CO 2 atmospheres.
    Glob. Change Biol. 19 , 900–910 (2013). doi:10.1111/gcb.12091;
    pmid: 23504846

  2. S. P. Long, E. A. Ainsworth, A. Rogers, D. R. Ort, Rising
    atmospheric carbon dioxide: Plants FACE the future.
    Annu. Rev. Plant Biol. 55 , 591–628 (2004). doi:10.1146/
    annurev.arplant.55.031903.141610; pmid: 15377233

  3. A. D. B. Leakeyet al., Elevated CO 2 effects on plant carbon,
    nitrogen, and water relations: Six important lessons from
    FACE.J. Exp. Bot. 60 , 2859–2876 (2009). doi:10.1093/jxb/
    erp096; pmid: 19401412

  4. A. C. Finziet al., Increases in nitrogen uptake rather than
    nitrogen-use efficiency support higher rates of temperate
    forest productivity under elevated CO 2 .Proc. Natl. Acad.
    Sci. U.S.A. 104 , 14014–14019 (2007). doi:10.1073/
    pnas.0706518104; pmid: 17709743

  5. Y. Kuzyakov, W. R. Horwath, M. Dorodnikov,
    E. Blagodatskaya, Review and synthesis of the effects of
    elevated atmospheric CO 2 on soil processes: No changes
    in pools, but increased fluxes and accelerated cycles.
    Soil Biol. Biochem. 128 , 66–78 (2019). doi:10.1016/
    j.soilbio.2018.10.005

  6. Y. Luoet al., Progressive Nitrogen Limitation of Ecosystem
    Responses to Rising Atmospheric Carbon Dioxide.Bioscience
    54 , 731 (2004). doi:10.1641/0006-3568(2004)054[0731:
    PNLOER]2.0.CO;2

  7. M. J. Hovendenet al., Warming prevents the elevated CO 2 -
    induced reduction in available soil nitrogen in a temperate,
    perennial grassland.Glob. Change Biol. 14 , 1018– 1024
    (2008). doi:10.1111/j.1365-2486.2008.01558.x

  8. W. I. J. Dielemanet al., Simple additive effects are rare: A
    quantitative review of plant biomass and soil process
    responses to combined manipulations of CO 2 and
    temperature.Glob. Change Biol. 18 , 2681–2693 (2012).
    doi:10.1111/j.1365-2486.2012.02745.x; pmid: 24501048

  9. P. B. Reich, J. Oleksyn, Global patterns of plant leaf N
    and P in relation to temperature and latitude.Proc. Natl.
    Acad. Sci. U.S.A. 101 , 11001–11006 (2004). doi:10.1073/
    pnas.0403588101; pmid: 15213326

  10. P. B. Reich, J. Oleksyn, M. G. Tjoelker, Needle Respiration and
    Nitrogen Concentration in Scots Pine Populations from a
    Broad Latitudinal Range: A Common Garden Test with
    Field-Grown Trees.Funct. Ecol. 10 , 768 (1996).
    doi:10.2307/2390512

  11. M. G. Tjoelker, P. B. Reich, J. Oleksyn, Changes in leaf
    nitrogen and carbohydrates underlie temperature and CO 2
    acclimation of dark respiration in five boreal tree species.
    Plant Cell Environ. 22 , 767–778 (1999). doi:10.1046/
    j.1365-3040.1999.00435.x

  12. A. J. Elmore, D. M. Nelson, J. M. Craine, Earlier springs are
    causing reduced nitrogen availability in North American
    eastern deciduous forests.Nat. Plants 2 , 16133 (2016).
    doi:10.1038/nplants.2016.133; pmid: 27618399

  13. M. A. Dawes, P. Schleppi, S. Hättenschwiler, C. Rixen,
    F. Hagedorn, Soil warming opens the nitrogen cycle at the
    alpine treeline.Glob. Change Biol. 23 , 421–434 (2017).
    doi:10.1111/gcb.13365; pmid: 27207568

  14. D. S. Novem Auyeung, V. Suseela, J. S. Dukes, Warming and
    drought reduce temperature sensitivity of nitrogen
    transformations.Glob. Change Biol. 19 , 662–676 (2013).
    doi:10.1111/gcb.12063; pmid: 23504800

  15. S. Xu, J. Sardans, J. Zhang, J. Peñuelas, Variations in foliar
    carbon:nitrogen and nitrogen:phosphorus ratios under global
    change: a meta-analysis of experimental field studies.
    Sci. Rep. 10 , 12156 (2020). doi:10.1038/s41598-020-68487-0;
    pmid: 32699217

  16. E. Baiet al., A meta-analysis of experimental warming
    effects on terrestrial nitrogen pools and dynamics.
    New Phytol. 199 , 441–451 (2013). doi:10.1111/nph.12252;
    pmid: 23550663

  17. M. J. Hovenden, P. C. D. Newton, K. E. Wills, Seasonal not
    annual rainfall determines grassland biomass response to
    carbon dioxide.Nature 511 , 583–586 (2014). doi:10.1038/
    nature13281; pmid: 24870242

  18. L. Heet al., Nitrogen Availability Dampens the Positive
    Impacts of CO 2 Fertilization on Terrestrial Ecosystem Carbon
    and Water Cycles.Geophys. Res. Lett. 44 , 11590– 11600
    (2017). doi:10.1002/2017GL075981

  19. M. Lee, E. Shevliakova, C. A. Stock, S. Malyshev, P. C. D. Milly,
    Prominence of the tropics in the recent rise of global nitrogen
    pollution.Nat. Commun. 10 , 1437 (2019). doi:10.1038/
    s41467-019-13567-7; pmid: 31796746
    59. B.W.Abbottet al., Tundra wildfire triggers sustained
    lateral nutrient loss in Alaskan Arctic.Glob. Change Biol.
    27 , 1408–1430 (2021). doi:10.1111/gcb.15507;
    pmid: 33394532
    60. Z. Zhuet al., Greening of the Earth and its drivers.Nat. Clim. Change
    6 , 791–795 (2016). doi:10.1038/nclimate3004
    61. T. F. Keenanet al., Net carbon uptake has increased through
    warming-induced changes in temperate forest phenology.
    Nat. Clim. Change 4 , 598–604 (2014). doi:10.1038/
    nclimate2253
    62. B. A. Hungate, J. S. Dukes, M. R. Shaw, Y. Luo,
    C. B. Field, Nitrogen and climate change.Science 302 ,
    1512 – 1513 (2003). doi:10.1126/science.1091390;
    pmid: 14645831
    63. C. Terreret al., Nitrogen and phosphorus constrain the CO 2
    fertilization of global plant biomass.Nat. Clim. Change 9 ,
    684 – 689 (2019). doi:10.1038/s41558-019-0545-2
    64. P. B. Reichet al., Synergistic effects of four climate change
    drivers on terrestrial carbon cycling.Nat. Geosci. 13 ,
    787 – 793 (2020). doi:10.1038/s41561-020-00657-1
    65. S. Wanget al., Recent global decline of CO 2 fertilization
    effects on vegetation photosynthesis.Science 370 ,
    1295 – 1300 (2020). doi:10.1126/science.abb7772;
    pmid: 33303610
    66. T. C. R. White, The importance of a relative shortage of food
    in animal ecology.Oecologia 33 , 71–86 (1978). doi:10.1007/
    BF00376997; pmid: 28309267
    67. H. L. Throop, M. T. Lerdau, Effects of nitrogen deposition on
    insect herbivory: Implications for community and ecosystem
    processes.Ecosystems 7 , 109–133 (2004). doi:10.1007/
    s10021-003-0225-x
    68. F. Slansky Jr., P. Feeny, Stabilization of the Rate of Nitrogen
    Accumulation by Larvae of the Cabbage Butterfly on Wild
    and Cultivated Food Plants.Ecol. Monogr. 47 , 209– 228
    (1977). doi:10.2307/1942617
    69. P. Stiling, T. Cornelissen, How does elevated carbon dioxide
    (CO 2 ) affect plant-herbivore interactions? A field experiment
    and meta-analysis of CO 2 - mediated changes on plant
    chemistry and herbivore performance.Glob. Change Biol. 13 ,
    1823 – 1842 (2007). doi:10.1111/j.1365-2486.2007.01392.x
    70. M. J. Scriber, P. Feeny, Growth of Herbivorous Caterpillars
    in Relation to Feeding Specialization and to the Growth Form
    of Their Food.Ecology 60 , 829–850 (1979). doi:10.2307/
    1936618
    71. T. Ylioja, H. Roininen, M. P. Ayres, M. Rousi, P. W. Price,
    Host-driven population dynamics in an herbivorous insect.
    Proc. Natl. Acad. Sci. U.S.A. 96 , 10735–10740 (1999).
    doi:10.1073/pnas.96.19.10735; pmid: 10485895
    72. C. S. Awmack, S. R. Leather, Host plant quality and fecundity
    in herbivorous insects.Annu. Rev. Entomol. 47 , 817– 844
    (2002). doi:10.1146/annurev.ento.47.091201.145300;
    pmid: 11729092
    73. J. Pöyryet al., The effects of soil eutrophication propagate to
    higher trophic levels.Glob. Ecol. Biogeogr. 26 , 18–30 (2017).
    doi:10.1111/geb.12521
    74. J. Cebrianet al., Producer nutritional quality controls
    ecosystem trophic structure.PLOS ONE 4 , e4929 (2009).
    doi:10.1371/journal.pone.0004929; pmid: 19300514
    75. E. A. R. Welti, K. A. Roeder, K. M. de Beurs, A. Joern,
    M. Kaspari, Nutrient dilution and climate cycles underlie declines
    in a dominant insect herbivore.Proc. Natl. Acad. Sci. U.S.A.
    117 , 7271–7275 (2020). doi:10.1073/pnas.1920012117;
    pmid: 32152101
    76. R. van Klinket al., Meta-analysis reveals declines in terrestrial
    but increases in freshwater insect abundances.Science
    368 , 417–420 (2020). doi:10.1126/science.aax9931;
    pmid: 32327596
    77. C. A. Deanset al., Nutrition affects insect susceptibility to Bt
    toxins.Sci. Rep. 7 , 39705 (2017). doi:10.1038/srep39705;
    pmid: 28045087
    78. M. P. Nessel, T. Konnovitch, G. Q. Romero, A. L. González,
    Nitrogen and phosphorus enrichment cause declines in
    invertebrate populations: A global meta-analysis.Biol. Rev.
    96 , 2617–2637 (2021). doi:10.1111/brv.12771;
    pmid: 34173704
    79. S. W. Kimet al., Meeting Global Feed Protein Demand:
    Challenge, Opportunity, and Strategy.Annu. Rev. Anim. Biosci.
    7 , 221–243 (2019). doi:10.1146/annurev-animal-030117-
    014838 ; pmid: 30418803
    80. J. M. Craine, A. Elmore, J. P. Angerer, Long-term declines
    in dietary nutritional quality for North American cattle.
    Environ. Res. Lett. 12 , 044019 (2017). doi:10.1088/
    1748-9326/aa67a4
    81. J.D.Derner,L.Hunt,E.Filho,J.Ritten,J.Capper,
    G. Han, inRangeland Systems(Springer Nature, 2017),
    pp. 347–372.
    82. J.M.Craine,E.G.Towne,M.Miller,N.Fierer,
    Climatic warming and the future of bison as grazers.
    Sci. Rep. 5 , 16738 (2015). doi:10.1038/srep16738;
    pmid: 26567987
    83. W. R. Hill, J. Rinchard, S. Czesny, Light, nutrients and
    the fatty acid composition of stream periphyton.
    Freshw. Biol. 56 , 1825–1836 (2011). doi:10.1111/
    j.1365-2427.2011.02622.x
    84. M. Torres-Ruiz, J. D. Wehr, A. A. Perrone, Trophic relations
    in a stream food web: Importance of fatty acids for
    macroinvertebrate consumers.J. N. Am. Benthol. Soc. 26 ,
    509 – 522 (2007). doi:10.1899/06-070.1
    85. R. D. Saboet al., Positive correlation between woodd^15 N and
    stream nitrate concentrations in two temperate deciduous
    forests.Environ. Res. Commun. 2 , 025003
    (2020). doi:10.1088/2515-7620/ab77f8
    86. H. A. de Witet al., Land-use dominates climate controls on
    nitrogen and phosphorus export from managed and natural
    Nordic headwater catchments.Hydrol. Processes 34 ,
    4831 – 4850 (2020). doi:10.1002/hyp.13939
    87. F. Sánchez-Bayo, K. A. G. Wyckhuys, Further evidence for a
    global decline of the entomofauna.Austral Entomol. 60 ,9– 26
    (2021). doi:10.1111/aen.12509
    88. C. M. Duarte, D. J. Conley, J. Carstensen,
    M. Sánchez-Camacho, Return to Neverland: Shifting
    baselines affect eutrophication restoration targets.
    Estuaries Coasts 32 , 29–36 (2009). doi:10.1007/
    s12237-008-9111-2
    89. A. Oczkowskiet al., How the distribution of anthropogenic
    nitrogen has changed in Narragansett Bay (RI, USA) following
    major reductions in nutrient loads.Estuaries Coasts 41 ,
    2260 – 2276 (2018). doi:10.1007/s12237-018-0435-2;
    pmid: 30971866
    90. S. W. Nixon, Replacing the Nile: Are anthropogenic nutrients
    providing the fertility once brought to the Mediterranean by a
    great river?Ambio 32 , 30–39 (2003). doi:10.1579/0044-
    7447-32.1.30; pmid: 12691489
    91. C. Oviattet al., Managed nutrient reduction impacts on
    nutrient concentrations, water clarity, primary production,
    and hypoxia in a north temperate estuary.Estuar. Coast.
    Shelf Sci. 199 , 25–34 (2017). doi:10.1016/
    j.ecss.2017.09.026
    92. C. L. Meunieret al., From elements to function: Toward
    unifying ecological stoichiometry and trait-based ecology.
    Front. Environ. Sci. 5 , 18 (2017). doi:10.3389/
    fenvs.2017.00018
    93. J. Meyerholt, K. Sickel, S. Zaehle, Ensemble projections
    elucidate effects of uncertainty in terrestrial nitrogen
    limitation on future carbon uptake.Glob. Change Biol. 26 ,
    3978 – 3996 (2020). doi:10.1111/gcb.15114;
    pmid: 32285534
    94. E. Pennisi, Carbon dioxide increase may promote‘insect
    apocalypse’.Science 368 , 459 (2020). doi:10.1126/
    science.368.6490.459; pmid: 32355011
    95. M. L. Wordet al., Soil-targeted interventions could alleviate
    locust and grasshopper pest pressure in West Africa.
    Sci. Total Environ. 663 , 632–643 (2019). doi:10.1016/
    j.scitotenv.2019.01.313; pmid: 30731409
    96. J. E. Comptonet al., Ecological and water quality
    consequences of nutrient addition for salmon restoration in
    the Pacific Northwest.Front. Ecol. Environ. 4 , 18– 26
    (2006). doi:10.1890/1540-9295(2006)004[0018:EAWQCO]
    2.0.CO;2
    97. J. Sardanset al., Changes in nutrient concentrations of
    leaves and roots in response to global change factors.
    Glob. Change Biol. 23 , 3849–3856 (2017). doi:10.1111/
    gcb.13721; pmid: 28407324
    98. L. Denget al., Soil GHG fluxes are altered by N deposition:
    New data indicate lower N stimulation of the N 2 O flux and
    greater stimulation of the calculated C pools.Glob. Change Biol.
    26 , 2613–2629 (2020). doi:10.1111/gcb.14970
    99. M. Engardt, D. Simpson, M. Schwikowski, L. Granat,
    Deposition of sulphur and nitrogen in Europe 1900–2050.
    Model calculations and comparison to historical observations.
    Tellus B 69 , 1328945 (2017). doi:10.1080/
    16000889.2017.1328945
    100. S. Running, S. Zhao, MOD17A3HGF MODIS/Terra Net Primary
    Production Gap-Filled Yearly L4 Global 500 m SIN Grid V006.
    NASA EOSDIS Land Processes DAAC (2019). doi:10.5067/
    MODIS/MOD17A3HGF.006


Masonet al.,Science 376 , eabh3767 (2022) 15 April 2022 10 of 11


RESEARCH | REVIEW

Free download pdf