Science - USA (2022-04-15)

(Maropa) #1

  1. R. D. Lisk, R. A. Pretlow 3rd, S. M. Friedman, Hormonal
    stimulation necessary for elicitation of maternal nest-building
    in the mouse (Mus musculus).Anim. Behav. 17 , 730– 737
    (1969). doi:10.1016/S0003-3472(69)80020-5; pmid: 5378004

  2. S. Suyama, T. Yada, New insight into GABAergic neurons in the
    hypothalamic feeding regulation.J. Physiol. Sci. 68 , 717– 722
    (2018). doi:10.1007/s12576-018-0622-8; pmid: 30003408

  3. S. F. Morrison, Central neural control of thermoregulation and
    brown adipose tissue.Auton. Neurosci. 196 , 14–24 (2016).
    doi:10.1016/j.autneu.2016.02.010; pmid: 26924538

  4. Y. Chen, Y.-C. Lin, T.-W. Kuo, Z. A. Knight, Sensory detection of
    food rapidly modulates arcuate feeding circuits.Cell 160 ,
    829 – 841 (2015). doi:10.1016/j.cell.2015.01.033;
    pmid: 25703096

  5. Z. Huanget al., Antibody neutralization of microbiota-derived
    circulating peptidoglycan dampens inflammation and
    ameliorates autoimmunity.Nat. Microbiol. 4 , 766–773 (2019).
    doi:10.1038/s41564-019-0381-1; pmid: 30833732

  6. F. De Vadderet al., Microbiota-generated metabolites promote
    metabolic benefits via gut-brain neural circuits.Cell 156 ,
    84 – 96 (2014). doi:10.1016/j.cell.2013.12.016; pmid: 24412651

  7. J. Bretonet al., Gut commensal E. coli proteins activate host
    satiety pathways following nutrient-induced bacterial growth.
    Cell Metab. 23 , 324–334 (2016). doi:10.1016/
    j.cmet.2015.10.017; pmid: 26621107

  8. T. Arentsen, R. Khalid, Y. Qian, R. Diaz Heijtz, Sex-dependent
    alterations in motor and anxiety-like behavior of aged
    bacterial peptidoglycan sensing molecule 2 knockout mice.
    Brain Behav. Immun. 67 , 345–354 (2018). doi:10.1016/
    j.bbi.2017.09.014; pmid: 28951252

  9. M. M. Puscedduet al., Nod-like receptors are critical for gut-
    brain axis signalling in mice.J. Physiol. 597 , 5777–5797 (2019).
    doi:10.1113/JP278640; pmid: 31652348

  10. G. Peiet al., Cellular stress promotes NOD1/2-dependent
    inflammation via the endogenous metabolite sphingosine-1-
    phosphate.EMBO J. 40 , e106272 (2021). doi:10.15252/
    embj.2020106272; pmid: 33942347

  11. L. M. Cox, H. Abou-El-Hassan, A. H. Maghzi, J. Vincentini,
    H. L. Weiner, The sex-specific interaction of the microbiome in
    neurodegenerative diseases.Brain Res. 1724 , 146385 (2019).
    doi:10.1016/j.brainres.2019.146385; pmid: 31419428

  12. M.-C. Audet, Stress-induced disturbances along the gut
    microbiota-immune-brain axis and implications for mental
    health: Does sex matter?Front. Neuroendocrinol. 54 , 100772
    (2019). doi:10.1016/j.yfrne.2019.100772; pmid: 31302116

  13. K. M. Culbert, C. L. Sisk, K. L. Klump, A Narrative Review of Sex
    Differences in Eating Disorders: Is There a Biological Basis?
    Clin. Ther. 43 , 95–111 (2021). doi:10.1016/
    j.clinthera.2020.12.003; pmid: 33375999

  14. A. Franceschini, L. Fattore, Gender-specific approach in
    psychiatric diseases: Because sex matters.Eur. J. Pharmacol.
    896 , 173895 (2021). doi:10.1016/j.ejphar.2021.173895;
    pmid: 33508283

  15. M. S. Thionet al., Microbiome Influences Prenatal and Adult
    Microglia in a Sex-Specific Manner.Cell 172 , 500–516.e16
    (2018). doi:10.1016/j.cell.2017.11.042; pmid: 29275859
    37. F. Kühnet al., Intestinal alkaline phosphatase targets the gut
    barrier to prevent aging.JCI Insight 5 , e134049 (2020).
    doi:10.1172/jci.insight.134049; pmid: 32213701
    38. E. Jašarević, K. E. Morrison, T. L. Bale, Sex differences in the
    gut microbiome-brain axis across the lifespan.Philos. Trans. R.
    Soc. London Ser. B 371 , 20150122 (2016). doi:10.1098/
    rstb.2015.0122; pmid: 26833840
    39. Z. S. Ma, W. Li, How and Why Men and Women Differ in Their
    Microbiomes: Medical Ecology and Network Analyses of the
    Microgenderome.Adv. Sci. 6 , 1902054 (2019). doi:10.1002/
    advs.201902054; pmid: 31832327
    40. S. L. Padillaet al., AgRP to Kiss1 neuron signaling links
    nutritional state and fertility.Proc. Natl. Acad. Sci. U.S.A. 114 ,
    2413 – 2418 (2017). doi:10.1073/pnas.1621065114;
    pmid: 28196880
    41. G. Neal-Perry, E. Nejat, C. Dicken, The neuroendocrine
    physiology of female reproductive aging: An update.Maturitas
    67 , 34–38 (2010). doi:10.1016/j.maturitas.2010.04.016;
    pmid: 20570066
    42. F. Mauvais-Jarvis, D. J. Clegg, A. L. Hevener, The role of
    estrogens in control of energy balance and glucose
    homeostasis.Endocr. Rev. 34 , 309–338 (2013). doi:10.1210/
    er.2012-1055; pmid: 23460719
    43. M. E. Griffin, C. W. Hespen, Y. C. Wang, H. C. Hang, Translation
    of peptidoglycan metabolites into immunotherapeutics.
    Clin. Transl. Immunol. 8 , e1095 (2019). doi:10.1002/cti2.1095;
    pmid: 31798878
    44. D. Kimet al., Nod2-mediated recognition of the microbiota is
    critical for mucosal adjuvant activity of cholera toxin.
    Nat. Med. 22 , 524–530 (2016). doi:10.1038/nm.4075;
    pmid: 27064448
    45. F. Barreauet al., CARD15/NOD2 is required for Peyer’s
    patches homeostasis in mice.PLOS ONE 2 , e523 (2007).
    doi:10.1371/journal.pone.0000523; pmid: 17565376
    46. E. Casanovaet al., A CamKIIaiCre BAC allows brain-specific
    gene inactivation.Genesis 31 , 37–42 (2001). doi:10.1002/
    gene.1078; pmid: 11668676
    47. R. Wheeler, F. Veyrier, C. Werts, I. G. Boneca, inGlycoscience:
    Biology and Medicine, N. Taniguchiet al., Eds. (Springer, 2015),
    pp. 737–747.
    48. D. Mengin-Lecreulx, E. Siegel, J. van Heijenoort, Variations in
    UDP-N-acetylglucosamine and UDP-N-acetylmuramyl-
    pentapeptide pools in Escherichia coli after inhibition of protein
    synthesis.J. Bacteriol. 171 , 3282–3287 (1989). doi:10.1128/
    jb.171.6.3282-3287.1989; pmid: 2656647
    49. F. B. Wientjes, C. L. Woldringh, N. Nanninga, Amount of
    peptidoglycan in cell walls of gram-negative bacteria.
    J. Bacteriol. 173 , 7684–7691 (1991). doi:10.1128/
    jb.173.23.7684-7691.1991; pmid: 1938964
    50. K. P. Nguyen, T. J. O’Neal, O. A. Bolonduro, E. White, A. V. Kravitz,
    Feeding Experimentation Device (FED): A flexible open-source
    device for measuring feeding behavior.J. Neurosci. Methods
    267 , 108–114 (2016). doi:10.1016/j.jneumeth.2016.04.003;
    pmid: 27060385
    51. N. Renieret al., Mapping of Brain Activity by Automated
    Volume Analysis of Immediate Early Genes.Cell 165 ,


1789 – 1802 (2016). doi:10.1016/j.cell.2016.05.007;
pmid: 27238021


  1. L. A. Gunaydinet al., Natural neural projection
    dynamics underlying social behavior.Cell 157 , 1535– 1551
    (2014). doi:10.1016/j.cell.2014.05.017;
    pmid: 24949967

  2. T. Bacchetti De Gregoris, N. Aldred, A. S. Clare, J. G. Burgess,
    Improvement of phylum- and class-specific primers for
    real-time PCR quantification of bacterial taxa.
    J. Microbiol. Methods 86 , 351–356 (2011). doi:10.1016/
    j.mimet.2011.06.010; pmid: 21704084


ACKNOWLEDGMENTS
We thank S. Saha, E. de Launoit, and T. Topilko for their help in
conducting and/or analyzing experiments; G. Chevalier for his
preliminary work onNod2GFPmice; and D. Mucida and
G. M. Silva for their insightful discussions and critical reading
and editing of the manuscript. We would also like to thank
P. Campagne from the Hub of Bioinformatics and Biostatistics
of the Institut Pasteur for his advice on the statistical tests
used in this work and the members of the Animalerie Centrale
of the Institut Pasteur for maintenance and care of the mice
used in this work. We also thank the members of the
Microenvironment & Immunity Unit, the laboratory for
Perception & Memory, the Stroma, Inflammation & Tissue
Repair Unit, and the Biology and Genetics of the Bacterial Cell
Wall Unit, for their support and feedback.Funding:Institutional
support was provided by Institut Pasteur, CNRS, and Inserm.
Also supported by Pasteur-Roux postdoctoral fellowships from
the Institut Pasteur (I.G.), a Human Frontier Science Program
fellowship (I.G.), Agence Nationale de la Recherche grant
ANR-16-CE15-0021 (I.G.B., P.-M.L., G.C. and G.E.), DFG CRC1182
project C2 (P.R.), and life insurance company“AG2R-La-
Mondiale”(P.-M.L.).Author contributions:Conceptualization:
I.G. Formal analysis: I.G., A.V.-P. Funding acquisition: I.G., G.L.,
I.G.B., G.E., P.-M.L. Investigation: I.G., G.L., N.R., A.V.-P., R.W.,
C.M., A.N., S.D., B.P., F.V. Methodology: I.G., G.L., N.R., S.W.,
A.V.-P., A.N., R.W. Project administration: I.G. Resources:
S.H., P.R., I.G.B. Supervision: G.L., I.G.B., G.E., P.-M.L.
Validation: I.G., N.R., A.V.-P., G.L., R.W. Visualization: I.G.,
A.V.-P. Writing–original draft: I.G. Writing–review and editing:
I.G., G.L., N.R., I.G.B., G.E., P.-M.L., R.W., P.R.Competing
interests:The authors declare no competing interests.Data
and materials availability:All data are available in the main
text or the supplementary materials.

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abj3986
Figs. S1 to S8
Tables S1 and S2
MDAR Reproducibility Checklist

11 May 2021; accepted 25 February 2022
10.1126/science.abj3986

Gabanyiet al.,Science 376 , eabj3986 (2022) 15 April 2022 12 of 12


RESEARCH | RESEARCH ARTICLE

Free download pdf