- (8) : 2 ≥ max.{|x – y|, |x + y|}
⇒ |x – y| ≤ 2 and |x + y| ≤ 2, which forms a square
of diagonal length 4 units.
2
–2
2
–=–2
+= 2 –= 2
+=–2
⇒ The area of the region =
1
2
××= 448 sq. units.
- (4) : Area = 4
0
1
∫|ln |xdx
=−^4 ∫
0
1
lnxdx=− 4 []xxxln − 01 = 4 sq. units
- (7) : Then required area will be equal to area
enclosed by y = f (x), the y-axis between the abscissa
at y = –2 and y = 6.
= 6
(0, 2)
–1
=–2
Required area = { 62 ( )} [ ( ) ( )]
0
1
1
0
∫∫− + −−
−
fx dx fx dx
⇒ 9
2
=m ⇒− 27 =
n
m
- (0) : I= ∫ 2 t tdt
4
2
sin cos
/
/
π
π
- ∫{( sin cos ) (sin cos )}− ++∫ − sin cos
/
/
tt ttdt 2 ttdt
54
2 π
π
π
π
= ∫∫sin − sin =
/
//
220
4
254
tdt tdt
π
π
π
π
- (6) :
Area=∫()()6543−− − −−^22 ∫
1
3
1
5
xx dx xx dx
+∫() 43 −−^2 +∫() 315 −
3
4
4
5
xx dx xdx
=^73
6
sq. units
- (8) : ′ =
+ − +
→
fx fx h fx
h h
( ) lim ()()
0
0
= ++ −−−
→
lim () () () () () ()
h
fx fh h fx fx f fx
0 h
00
= −
−
⎛
⎝⎜
⎞
lim→ ⎠⎟+
() () ()
h
fh f
h
fx
0
0
0
⇒ fx′()= fx() ⇒
′ =
∫∫
fx
fx
()dx dx
()
⇒ (^2) fx x c()=+ ⇒ fx()=x
2
4
When α = 0, area is minimum.
Required minimum area = 22
0
9
∫ ydy
= ⎛
⎝⎜
⎞
⎠⎟
4 =
32
72
32
0
9
y/
/
sq. units.
- (8) : x^2 + y^2 ≤ 144 and sin(x + y) ≥ 0
⇒ 2 nπ ≤ x + y ≤ (2n + 1)π ; n ∈I
Hence, we get the area
S=π⋅ ⇒ S=
π
144
29
8
- (1) : Area = n + 1
+ 1
–1
1
+ 1