dfx
dx
xx
2
2 12
()=+δδ() () and f(0) = f ′(0) = 0.
- The value of f(5) is
(a) 2 (b) 5 (c) 7 (d) 10 - The value of f ′(5) is
(a) 2 (b) 5 (c) 7 (d) 10 - The number of points where f′(x) is not
differentiable is
(a) zero (b) one (c) two (d) infinite
Paragraph for Question No. 15-17
For the curve y xy
x
=()− ,
3 32 /
dy
dx
y
Qx
=
()
- y^2 + (Q(x))^2 = logπ represents
(a) line (b) circle
(c) sine curve (d) ellipse - Q′(1) =
(a) 0 (b) –1 (c) 1 (d) –2 - limsin( ( ))
x
Qx
→ x
=
0
(a) 0 (b) 1 (c) –1 (d) does not exist
SOLUTIONS
- (b) : Rewrite the given integral eqn. as
2 2
0
(^12)
0
(^122)
0
1
∫∫∫xf x()dx=+x dx f ()x dx
ie.. ( ( )f x^22 x dx) ie f x.., ( )^2 x
0
1
∫ − ==^0
- (d) : Rewrite the given integral as
∫∫xf x()−f^2 ()x dx= x dx
0
1 2
0
1
4
ie..,∫⎝⎛⎜fx()−x⎟⎠⎞ dx= ⇒ f x()=x
2
0
2
2
0
1
- (a) : Use property, fxdx fa xdx
aa
∫∫() = (− )
00
- (d) : Use the standard result, dx
dy
y
y
2
2
2
1
= 3
− , the given
equation reduces to y
y
(^2) y
2
1
− 3 = (^0) i.e. y 2 = 0 or y 1 = 1
y 2 = 0 ⇒ y 1 = b and y = bx + c (linear function)
y 1 = 1 ⇒ y = x + k (which is already included in
the above solution)
Hence, y = bx + c, b ≠ 0
- (b) : Let Ifxdx f==∫∫( ) (sin ) cos d
/
0
1
0
2
θθθ
π
or, If= ∫ (cos ) sin d ax[ ( − )
/
θθθ
π
0
2
By property]
Adding, we get
21
0 4
2
IdieI≤≤∫ θ π
π/
..
- (a) : Notice that 1 2
0
∫ +costdt
θ
is the arc length
of the curve y = sinx from (0, 0) to (θ, sinθ) and
θθ^22 +sin is the distance between these points.
- (a) : Put y = et to convert the given differential
equation into linear equation. - (a) : For x ∈ (0, π/2), 0 ≤ λ 1 < λ 2 < 1
–λ 1 cos^2 x > –λ 2 cos^2 x
⇒ f(λ 1 ) < f(λ 2 ) ⇒ increasing function - (b) : Note that f is inverse function of g(y) = yey
and f(e) = 1
So, f x dx g y dy e
e
() () () ()
00
1
∫∫+=^100 −
⇒ ∫∫fxdx e= − yedy e= −
e y
()
00
1
1
- (a) :
(^) af x nxdx n f a na f b nb
b
∫ ()sin =^1 [ ()cos − ()cos ]
+^1 ⋅∫ ′
n
f x nxdx
a
b
()cos
(Integration by parts)
Now,^11
n
(()cosf a na−f b()cosnb≤n(| ( ) cosfa na|
- |f(b) cosnb|)
(triangle inequality)
≤^1 + → 0
n
(| ( ) | | ( ) |)fa fb
MPP-4 CLASS XII ANSWER KEY
- (d) 2. (b) 3. (d) 4. (d) 5. (c)
- (b) 7. (a,b,c) 8. (a,c) 9. (a,b,c) 10. (a,d)
- (b,c) 12. (a,d) 13. (a,c) 14. (b) 15. (b)
- (b) 17. (6) 18. (6) 19. (3) 20. (3)