Mathematics_Today_-_October_2016

(backadmin) #1

  1. In a triangle ABC, 2
    2 22


cosAC ac.
acac

− = +
+ −

Then

(a) B = π/3 (b) B = C
(c) A, B, C are in A.P.
(d) B + C = A


  1. A line parallel to the line x – 3y = 2 touches the
    circle x^2 + y^2 – 4x + 2y – 5 = 0 at the point
    (a) (1, –4) (b) (1, 2)
    (c) (3, –4) (d) (3, 2)
    SOLUTIONS

  2. (a) : The total number of ways, the person can
    select n coins from 2n + 1 coins is
    21
    1


21
2

21
3

nn n 21 n 255
CC C Cn
++ +++++=... +

⇒ 1 ++ + ++ =+^21 nn n++ +CC C 1 212 213 ...^21 n+Cn 255 1

⇒^1 + = ⇒ = ⇒ = ⇒ =
2

() 221 nn 256 2228 2 nn 8 4.


  1. (b) : The word ARRANGE consist of 7 letters.
    Among these 7 letters there are two R’s and two A’s. No.
    of ways of arranging the letters such that two R’s are


always together =^6
2


!
!
∴ The numbers of words where two R’s do not come


together are^7
22


6
2

6
2

7
2

1 6
2

5
2

! 900
!!

!
!

!
!

!
!

− = ⎜⎛⎝ −⎞⎠⎟= ⋅ =.


  1. (c) : After giving the largest fruit to the youngest boy,
    the remaining 5 fruits can be given to the remaining 5
    boys in 5! ways, i.e. in 120 ways.

  2. (b) : We k n o w t h a t


n
r n r

n
r
r

n n
r
r

P n
r

C P
r

C
!!

= ⇒ =
==

∑∑
11
Now nr
r


n nnnn n
n
CC CCC C Cn
=

∑ =+ ++++−
1

0123 ( ... ) 0

=+++++( ... )− = −


nnnnCCCC 0123 nC Cn nn 021


  1. (c) : We h a v e^474523
    1


5
CCj
j

+ −
=


= +++++


(^47) CCCCCC 4 51 3 50 3 49 3 48 3 47 3
= + ++++()
47
4
47
3
48
3
49
3
50
3
51
CC CCCC 3
=++++()
48
4
48
3
49
3
50
3
51
CC CCC (^3)
=+++()
(^49) CC CC 4 49 3 50 3 51 3
=++=+=()()
(^50) CC C CC C 4 50 3 51 3 51 4 51 3 52 4



  1. (a) : The required number of numbers are
    5! + (5! – 4!) = 120 + 96 = 216

  2. (b) : To form a circle atleast 3 points are required.
    ∴ Number of circles which can be drawn by 9 points
    =^9 C 3 , but given that 4 points are concyclic.
    Therefore, instead of getting^4 C 3 number of circles we
    get only one circle.
    Hence total number of required circles is
    9 C 3 –^4 C 3 + 1 = 81

  3. (b) : The arrangement of lectures of the 5 persons
    may be done as (AC)BDE, where C always deliver lecture
    after A. Thus total number of such arrangements are
    4! = 24

  4. (b) : We h a v e 34 sinxx+=cos
    3
    2


1
2

⇒ sinxx+=cos 2

⇒ sin sinxxππ+=cos cos
33

2

⇒−cos⎝⎜⎛x π⎟⎞⎠=
3

2 , which is impossible.

As we know that −≤ ⎛ −
⎝⎜


1 cos x 3 ⎠⎟≤ 1
π.


  1. (d) : We h a v e 522
    2


cosθ++=<<cos^2 θ 100 , θπ
⇒ 5cos2θ + 1 + cosθ + 1 = 0
⇒ 5(2cos^2 θ – 1) + cosθ + 2 = 0
⇒ 10cos^2 θ + cosθ – 3 = 0
⇒ (2cosθ – 1)(5cosθ + 3) = 0
∴ θ==π θπ−−⎜⎝⎛− ⎠⎟⎞= − ⎝⎛⎜ ⎠⎟⎞
3

3
5

3
5

and cos^11 cos
()∵ 0 <<θπ


  1. (a) : We h a v e logcosθθtanθθ+=logsin cot 0
    ⇒−logcosθθtanθθlogsin tan = 0


⇒ log tan =
log cos

log tan
log sin

θ
θ

θ
θ

⇒ log sin =
log cos

θ
θ

1

⇒⇒logcosθsinθθθθ= 1 cos =sin ⇒tan =tanπ
4
∴ θπ=+nnZπ ∈
4

,.
Free download pdf