- (a) : Let P(h, k) divides the chord AB in the ratio
 
2 : 1. OD⊥AB, where O is the centre of the circle
and D is the foot of the perpendicular drawn from the
centre O.
Now, OB== 10 ;.OD (^1)
∴ DB= 10 1− = 3 ∴AB== 2 ;.DB (^6)
∵ AP PB::= 21 ∴PB==^1 AB
3
2
∴ DP=DB−PB=321.− =
Now, from ΔODP, we have
OP^2 = OD^2 + DP^2 ⇒ h^2 + k^2 = 1 + 1 = 2
∴ locus of the point (h, k) is x^2 + y^2 = 2
- (c) : The line y = x cuts the circle x^2 + y^2 – 2x = 0 at
the points A(0, 0) and B(1, 1). Therefore the equation of
the circle, whose diameter is AB, is
(x – 0)(x – 1) + (y – 0)(y – 1) = 0
⇒ x^2 + y^2 – x – y = 0 - (c) : Let the line 3x + y + 5 = 0 cut the circle x^2 + y^2 = 16
at the points A and B, hence AB is a chord of the circle. 
The mid-point of the chord AB is ⎜⎛⎝−−^3 ⎞⎠⎟
2
1
2, (the foot
of the perpendicular from the centre to the chord) andlength of the chord AB=×^216 − =25
102 27
2.∴ Centre of the circle, whose diameter is AB, is
⎛⎝⎜−−^3 ⎞⎠⎟ ==
21
21
227
2,. and its radius ABThus the equation of the circle is
⎛⎜⎝xy+^3 ⎠⎞⎟ ++⎝⎛⎜ ⎞⎠⎟ =
21
227
222⇒ x^2 + y^2 + 3x + y = 11
- (b) : Given that, a
cos^22 C ccos Ab
22 
3
2+=⇒ a(1 + cosC) + c(1 + cosA) = 3b
⇒ a + c + (acosC + ccosA) = 3b
⇒ a + c + b = 3b (∵ acosC + ccosA = b)
⇒ a + c = 2b, i.e. a, b, c are in A.P.
- (b) : We have 3cosx + 4sinx = 2k + 1
 
⇒
++
+= +
+3
344
3421
22 22 3422cosxxsin k⇒^3 +=+
54
521
5cosxxsin k⇒−cos(x ααα)=^21 k+ , cos ==, sin
53
54
5where∵ −≤ − ≤ ⇒−≤ 11121 + ≤
5cos(x α) k 1
⇒ –5 ≤ 2 k + 1 ≤ 5 ⇒ –6 ≤ 2 k ≤ 4
Therefore integral values of k are –3, –2, –1, 0, 1, 2
∴ Required number is 6.- (d) : The word ‘COMBINE’ is consisting of 7 letters.
There are 3 vowels namely- E, I and O.
The two vowels for beginning and ending place can
be arranged in^3 P 2 ways. For each of the^3 P 2 ways the
remaining 5 letters can be arranged in 5! ways.
Therefore required number is^3 P 2 × 5! = 720. - (c, d) : Given that nC 4 , nC 5 and nC 6 are in A.P.
∴⋅
− 
=
−+
−2
554466n
nn
nn
n!
!( )!!
!( )!!
!( )!
⇒
−=
−−+
×2
551
451
()()()nnn 65
⇒
−= −−+
−−12
54530
() 45()()
n ()()nn
nn
⇒ n^2 – 9n + 50 = 12(n – 4) ⇒ n^2 – 21n + 98 = 0
⇒ n^2 – 14n – 7n + 98 = 0 ⇒ (n – 14)(n – 7) = 0
⇒ n = 14 or n = 7- (b, d) : We know that |cosx| ≥ 0
⇒ sinx ≥ 0. So, there is no x in (π, 2π).
Now, if x = 2π, |cos2π| ≤ sin2π, which is not true.
So, 0 ≤ x ≤ π
If 0 ≤≤xxxxxπ then ≤ ⇒ ≤
2 
cos sin cos sin⇒≥∴≤≤tanxx 1
42ππIf π π
2≤≤xxx then cos ≤sin
⇒ –cosx ≤ sinx ⇒ tanx ≤ –1 (∵ cosx < 0)
∴ ππ< ≤
23
4x
∴∈⎡
⎣⎢⎤
⎦⎥∪⎡
⎣⎢⎤
⎦⎥x ππ π π
42 23
4,,.Solution Sender of Maths Musing
SET-164- Akash Banerjee W.B.
 - Sk. Izajur Rahaman W.B.
 - N. Jayanthi Hyderabad
 - Khokon Kumar Nandi W.B.