Biophotonics_Concepts_to_Applications

(Dana P.) #1

  1. A. Shiohara, Y. Wang, L.M. Liz-Marzan, Recent approaches toward creation of hot spots for
    SERS detection. J. Photochem. Photobiol. C: Photochem. Rev. 21 ,2–25 (2014). (Review
    Article)

  2. U.S. Dinish, G. Balasundaram, Y.T. Chang, M. Olivo, Actively targeted in vivo multiplex
    detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci. Rep. 4 ,
    4075 (2014)

  3. G.S. He,Nonlinear Optics and Photonics(Oxford University Press, Oxford, 2015)

  4. H. Tu, S.A. Boppart, Coherent anti-Stokes Raman scattering microscopy: overcoming
    technical barriers for clinical translation. J. Biophotonics 7 (1–2), 9–22 (2014). (Review article)

  5. A.F. Pegoraro, A.D. Slepkov, A. Ridsdale, D.J. Moffatt, A. Stolow, Hyperspectral multimodal
    CARS microscopy in thefingerprint region. J. Biophotonics 7 (1–2), 49–58 (2014)

  6. R. Pecora (ed.),Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy
    (Springer, New York, 1985)

  7. M. Plewicki, R. Levis, Femtosecond stimulated Raman spectroscopy of methanol and acetone
    in a noncollinear geometry using a supercontinuum probe. J. Opt. Soc. Am. B 25 (10), 1714–
    1719 (2008)

  8. F.-K. Lu, M. Ji, D. Fu, X. Ni, C.W. Freudiger, G. Holtom, X.S. Xie, Multicolor stimulated
    Raman scattering microscopy. Mol. Phys. 110 (15–16), 1927–1932 (2012)

  9. C.W. Freudiger, W. Yang, G.R. Holton, N. Peyghambarian, X.S. Xie, K.Q. Kieu, Stimulated
    Raman scattering microscopy with a robustfibre laser source. Nat. Photonics 8 (2), 153– 159
    (2014)

  10. M. Filella, J. Zhang, M.E. Newman, J. Buffle, Analytical applications of photon correlation
    spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities
    and limitations. Aquat. Colloid Surf. Chem. 120 (1–3), 27–46 (1997)

  11. W. Tscharnuter, Photon correlation spectroscopy in particle sizing, inEncyclopedia of
    Analytical Chemistry, ed. by R.A. Meyers (Wiley, New York, 2013)

  12. P.R. Griffiths, J.A. de Haseth,Fourier Transform Infrared Spectrometry, 2nd edn. (Wiley,
    Hoboken, NJ, 2007)

  13. C. Hughes, M. Brown, G. Clemens, A. Henderson, G. Monjardez, N.W. Clarke, P. Gardner,
    Assessing the challenges of Fourier transform infrared spectroscopic analysis of blood serum.
    J. Biophotonics 7 (3–4), 180–188 (2014)

  14. J. Cao, E.S. Ng, D. McNaughton, E.G. Stanley, A.G. Elefanty, M.J. Tobin, P. Heraud, Fourier
    transform infrared microspectroscopy reveals unique phenotypes for human embryonic and
    induced pluripotent stem cell lines and their progeny. J. Biophotonics 7 (10), 767–781 (2014)

  15. G. Scarcelli, S.H. Yun, Confocal Brillouin microscopy for three-dimensional mechanical
    imaging. Nat. Photonics 2 (1), 39–43 (2008)

  16. S. Reiß, G. Burau, O. Stachs, R. Guthoff, H. Stolz, Spatially resolved Brillouin spectroscopy to
    determine the rheological properties of the eye lens. Biomed. Opt. Express 2 (8), 2144– 2159
    (2011)

  17. Z. Steelman, Z. Meng, A.J. Traverso, V.V. Yakovlev, Brillouin spectroscopy as a new method
    of screening for increased CSF total protein during bacterial meningitis. J. Biophoton. 8 (5),
    408 – 414 (2015)

  18. Z. Meng, V.V. Yakovlev, Brillouin spectroscopy characterizes microscopic viscoelasticity
    associated with skin injury. In: Proceedings of SPIE 9321, paper 93210C, Photonics West, San
    Francisco, 5 Mar 2015


290 9 Spectroscopic Methodologies

Free download pdf