Biophotonics_Concepts_to_Applications

(Dana P.) #1

enables such interconnections through the use of components such as minia-
turized connectors and tubing, syringe pumps, valves, or waste reservoirs.
11 :7 Using Web resources or journal articles, describe some configurations and
uses of a lab-on-fiber device.
11 :8 Using Web resources or journal articles, describe a typical setup for an
optogenetics procedure.


References



  1. A. Ashkin, History of optical trapping and manipulation of small-neutral particel, atoms, and
    molecules. IEEE J. Sel. Topics Quantum Electron. 6 (6), 841–856 (2000)

  2. A. Chiou, M.T. Wei, Y.Q. Chen, T.Y. Tseng, S.L. Liu, A. Karmenyan, C.H. Lin, Optical
    trapping and manipulation for biomedical applications, chap. 14, inBiophotonics, ed. by L.
    Pavesi, P.M. Fauchet (Springer, New York, 2008)

  3. D.J. Stevenson, F. Gunn-Moore, K. Dholakia, Light forces the pace: optical manipulation for
    biophotonics J. Biomed. Opt. 15(4), 041503 (2010)

  4. I. Verdeny, A. Farré, J. Mas, C. López-Quesada, E. Martín-Badosa, M. Montes-Usategui,
    Optical trapping: a review of essential concepts. Opt. Pura Apl. 44 (3), 527–551 (2011)

  5. P.M. Bendix, L. Jauffred, K. Norregaard, L. B. Oddershede, Optical trapping of nanoparticles
    and quantum dots. IEEE J. Sel. Topics Quantum Electron. 20(3), article 4800112 (2014)

  6. J.-B. Decombe, S.K. Mondal, D. Kumbhakar, S.S. Pal, and J. Fick, Single and multiple
    particle trapping using non-Gaussian beams from opticalfiber nanoantennas. IEEE J. Sel.
    Topics Quantum Electron, 21(4), article 4500106 (2015)

  7. C. Pacoret S. Régnier, Invited Article: a review of haptic optical tweezers for an interactive
    microworld exploration. Rev. Sci. Instrum, 84, article 081301 (2013)

  8. I. Heller, T P. Hoekstra, G.A. King, E.J.G. Peterman, G.J.L. Wuite, Optical tweezers analysis
    of DNA–protein complexes. Chem. Rev, 114(6), 3087–3119 (2014)

  9. D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, T. Huser, Rapid
    3Dfluorescence imaging of individual optically trapped living immune cells. J. Biophotonics
    8 (3), 208–216 (2015)

  10. A.J. Crick, M. Theron, T. Tiffert, V.L. Lew, P. Cicuta, J.C. Rayner, Quantitation of malaria
    parasite-erythrocyte cell-cell interactions using optical tweezers. Biophys. J. 107( 4), 846– 853
    (2014)

  11. J. Mas, A. Farré, J. Cuadros, I. Juvells, A. Carnicer, Understanding optical trapping
    phenomena: a simulation for undergraduates. IEEE T. Educ. 54 , 133–140 (2011)

  12. F.A. Gomez,Biological Applications of Microfluidics(Wiley, Hoboken, NJ, 2008)

  13. C. Lu, S.S. Verbridge,Microfluidic Methods for Molecular Biology(Springer, 2016)

  14. B. Lin (ed.),Microfluidics(Springer, Berlin, 2011)

  15. Microfluidic ChipShop,Lab-on-a-Chip Catalogue (Jena, Germany, July 2015) http://www.
    microfluidic-ChipShop.com

  16. M.W. Collins, C.S. König (eds.),Micro and Nano Flow Systems for Bioanalysis(Springer,
    New York, 2013)

  17. S. Unterkofler, M K. Garbos, T.G. Euser, P.St.J. Russell, Long-distance laser propulsion and
    deformation monitoring of cells in optofluidic photonic crystalfiber, J. Biophotonics, 6(9),
    743 – 752 (2013)

  18. G. Testa, G. Persichetti, P.M. Sarro, R. Bernini, A hybrid silicon-PDMS optofluidic platform
    for sensing applications. Biomed. Opt. Express, 5(2), 417–426 (2014)

  19. F.F. Tao, X. Xiao, K.F. Lei, I.-C. Lee, Paper-based cell culture microfluidic system. BioChip J,
    9(2), 97–104 (2015)


336 11 Biophotonics Technology Applications

Free download pdf