396
0
0
9 8 7 6 5 4 3 2 1
10 20 30 40 50 60 70 80
L* (%)
700/40
0
A
B
C
F
E
D
0
0
9 8 7 6 5 4 3 2 1
10 20 30 40 50 60 70 80
L* (%)
700/400
A
B
C
F
E
D
0
0
9 8 7 6 5 4 3 2 1
10 20 30 40 50 60 70 80
L* (%)
700/40
0
A
B
C
F
E
D
Total Organic Carbon (%)
0
50
100
150
200
0 5 10 15 20 25 30
S2
(m
gHC/
g rock
)
HI = 750 mgHC.g
-1 TOC
HI = 300 mgHC.g
-1 TOC
0
50
100
150
200
0 5 10 15 20 25 30
Total Organic Carbon (%)
HI = 750 mgHC.g
-1 TOC
HI = 300 mgHC.g
-1 TOC
Littoral deposit
Diatomite
S^2
(m
gH
C/g
rock
)
50
100
150
200
S^2
(mgH
C/
g rock
)
HI = 750 mgHC.g
-1 TOC
HI = 300 mgHC.g
-1 TOC
Lower diatomite Upper diatomite
Littoral unit E6 MWD
E5 Turbidite Events 1 and 4
0
0 5 10 15 20 25 30
Plateau
PAV 08
Basin
PAV1 2
Littoral
PAV 10 -E
E6 MWD (AD 600)
Diatomite
E5 MWD
Diatomite
Mineral basal unit
E5 Turbidite
(AD 1300)
Fig. 23.9 Characterization of Pavin sediments origin and sediment
source based on diffuse spectral refl ectance Q7/4 diagram ( left ) and
Rock-Eval pyrolysis represented by S2 vs. TOC diagram ( right ) for
cores PAV10-E (littoral), PAV08 (plateau) and PAV12 (basin). In the
Q7/4 diagram, the diffuse spectral refl ectance signature of littoral
deposit, diatomite , Mass-Wasting Deposit (MWD), Turbidite and
Mineral Basal unit are compared to the fi ve distinct poles of sediments
defi ned by Debret et al ( 2011 ): Iron-Rich deposits ( a ); Organic-rich
deposits dominated Melanoidine type ( b ); Organic-rich deposits domi-
nated by altered organic matter ( c ); Organic-rich deposits dominated by
Chlorophyll and by-products ( d ); Clayey deposits ( e ) and Carbonate
deposits ( f ). In the S2 vs. TOC diagram, Total Organic Carbon (TOC),
together with Hydrogen Index (HI) and S2 (thermal cracking of the
hydrocarbon compounds) are illustrated. The two linear domains of the
hydrogen index (HI = 750 and HI = 300 mgHCg −1 TOC) corresponding
to algal and terrestrial poles, respectively, are also represented
L. Chassiot et al.