The Lotus japonicus Genome

(Steven Felgate) #1

Gana JA, Kalengamaliro NE, Cunningham SM, Volenec
JJ (1998) Expression of β-amylase from alfalfa
taproots. Plant Physiol 118:1495– 1505
Glaring MA, Zygadlo A, Thorneycroft D, Schulz A,
Smith SM, Blennow A, Baunsgaard L (2007) An
extra-plastidialα-glucan, water dikinase fromArabid-
opsisphosphorylates amylopectin in vitro and is not
necessary for transient starch degradation. J Exp Bot
58:3949– 3960
Gutjahr C, Novero M, Welham T, Wang T, Bonfante P
(2011) Root starch accumulation in response to
arbuscular mycorrhizal colonization differs among
Lotus japonicusstarch mutants. Planta 234:639– 646
Harrison CJ, Hedley CL, Wang TL (1998) Evidence that
the rug3 locus of pea (Pisum sativumL.) encodes
plastidial phosphoglucomutase confirms that the
imported substrate for starch synthesis in pea amy-
loplasts is glucose-6-phosphate. Plant J 13:753– 762
Hildebrand D, Hymowitz T (1981) Role ofβ-amylase in
starch metabolism during soybean seed development
and germination. Physiol Plant 53:429– 434
Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S,
Parniske M, Wang TL (2007) TILLING mutants of
Lotus japonicusreveal that nitrogen assimilation and
fixation can occur in the absence of nodule-enhanced
sucrose synthase. Plant Physiol 144:806– 820
James MG, Denyer K, Myers AM (2003) Starch synthesis
in the cereal endosperm. Curr Opin Plant Biol
6:215– 222
Kim W-S, Krishnan HB (2010) The lack of beta-amylase
activity in soybean cultivarAltonasp 1 is associated
with a 1.2 kb deletion in the 5′region of beta-amylase
I gene. Crop Sci 50:1942– 1949
Kötting O, Kossmann J, Zeeman SC, Lloyd JR (2010)
Regulation of starch metabolism: the age of enlight-
enment? Curr Opin Plant Biol 13:321– 329
Lunn JE, MacRae E (2003) New complexities in the
synthesis of sucrose. Curr Opin Plant Biol 6:208– 214
Oldroyd GED (2013) Speak, friend, and enter: signalling
systems that promote beneficial symbiotic associations
in plants. Nat Rev Microbiol 11:252– 263
Monma M, Sugimoto T, Monma M, Kawamura Y, Saio K
(1991) Starch breakdown in developing soybean seeds
(Glycine maxcv. Enrei). Agric Biol Chem 55:67– 71
Reinhold H, Soyk S, Simkova K, Hostettler C, Marafino
J, Mainiero S, Vaughan CK, Monroe JD, Zeeman SC
(2011)β-Amylase–like proteins function as transcrip-
tion factors inArabidopsis, controlling shoot growth
and development. Plant Cell 23:1391– 1403
Ruzanski C, Smirnova J, Rejzek M, Cockburn D,
Pedersen HL, Pike M, Willats WGT, Svensson B,
Steup M, Ebenhöh O, Smith AM, Field RA (2013) A
bacterial glucanotransferase can replace the complex
maltose metabolism required for starch-to-sucrose
conversion in leaves at night. J Biol Chem
288:28581– 28598
Santelia D, Kötting O, Seung D, Schubert M, Thalmann
M, Bischof S, Meekins DA, Lutz A, Patron N, Gentry
MS, Allain FH-T, Zeeman SC (2012) The phospho-
glucan phosphatase LSF2 (like sex four 2)


dephosphorylates starch at the C3-position inArabid-
opsis. Plant Cell 23:4096– 4111
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T,
Nakao M, Sasamoto S, Watanabe A, Ono A, Kawa-
shima K, Fujishiro T, Katoh M, Kohara M, Kishida Y,
Minami C, Nakayama S, Nakazaki N, Shimizu Y,
Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido
N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori
H, Tabata S (2008) Genome structure of the legume,
Lotus japonicus. DNA Res 15:227– 239
Smith AM (2012) Starch in theArabidopsisplant. Starch/
Staerke 64:421– 434
Smith AM, Zeeman SC, Smith SM (2005) Starch
degradation. Annu Rev Plant Biol 56:73– 97
Sparla F, Costa A, Schiavo FL, Pupillo P, Trost P (2006)
Redox regulation of a novel plastid-targetedβ-amylase
ofArabidopsis thaliana. Plant Physiol 141:840– 850
Stitt M, Zeeman SC (2012) Starch turnover: pathways,
regulation and role in growth. Curr Opin Plant Biol
15:282– 292
Streb S, Delatte T, Umhang M, Eicke S, Schorderet M,
Reinhardt D, Zeeman SC (2008) Starch granule
biosynthesis inArabidopsisis abolished by removal
of all debranching enzymes but restored by the
subsequent removal of an endoamylase. Plant Cell
20:3448– 3466
Streb S, Zeeman S (2012) Starch metabolism inArabid-
opsis. In: TheArabidopsisBook 10:e0160, doi:10.
1199/tab.0160
Streb S, Egli B, Eicke S, Zeeman SC (2009) The debate
on the pathway of starch synthesis: a closer look at
low-starch mutants lacking plastidial phosphogluco-
mutase supports the chloroplast-localized pathway.
Plant Physiol 151:1769– 1772
Sulpice R, Pyl ET, Ishihara H, Trenkamp S, Steinfath M,
Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques
MC, Von Korff M, Steinhauser MC, Keurentjes JJB,
Guenther M, Hoehne M, Selbig J, Fernie AR,
Altmann T, Stitt M (2009) Starch as a major integrator
in the regulation of plant growth. Proc Natl Acad Sci
U S A 106:10348– 10353
Vargas WA, Salerno GL (2010) The Cinderella story of
sucrose hydrolysis: alkaline/neutral invertases, from
cyanobacteria to unforeseen roles in plant cytosol and
organelles. Plant Sci 178:1– 8
Verdier J, Torres-Jerez I, Wang M, Andriankaja A, Allen
SN, He J, Tang Y, Murray JD, Udvardi MK (2013)
Establishment of theLotus japonicusGene Expression
Atlas (LjGEA) and its use to explore legume seed
maturation. Plant J 74:351– 362
Vriet C, Welham T, Brachmann A, Pike M, Pike J, Perry
J, Parniske M, Sato S, Tabata S, Smith AM, Wang TL
(2010) A suite ofLotus japonicusstarch mutants
reveals both conserved and novel features of starch
metabolism. Plant Physiol 154:643– 655
Vriet C, Smith AM, Wang TL (2013) Root starch reserves
are necessary for vigorous re-growth following cutting
back inLotus japonicus. PLOS ONE (in press)
Wang TL, Bogracheva TY, Hedley CL (1998) Starch: As
simple as A, B, C? J Exp Bot 49:481– 502

114 C. Vriet et al.

Free download pdf