The Lotus japonicus Genome

(Steven Felgate) #1

90 % of nitrogen translocated inL. japonicus
(Waterhouse et al. 1996 ), thus highlighting the
importance of asparagine for nitrogen remobili-
zation inL. japonicusplants (Credali et al. 2013 ).


Acknowledgments Authors acknowledge the funding
by Consejería de Economía, Innovación y Ciencia from
Junta de Andalucía (project P10-CVI-6368 and BIO-163).
CMP acknowledges the receipt of PIF and V Plan Pro-
pio fellowships from University of Seville.


References


Bernard SM, Habash DZ (2009) The importance of
cytosolic glutamine synthetase in nitrogen assimilation
and recycling. New Phytol 182:608– 620
Betti M, Arcondeguy T, Marquez AJ (2006) Molecular
analysis of two mutants fromLotus japonicusdeficient
in plastidic glutamine synthetase: functional properties
of purified GLN2 enzymes. Planta 224:1068– 1079
Betti M, García-CalderónM,Pérez-Delgado CM et al
(2012) Glutamine synthetase in legumes: recent
advances in enzyme structure and functional genom-
ics. Int J Mol Sci 13:7994– 8024
Credali A, Díaz-Quintana A, García-Calderón M et al (2011)
Structural analysis of K+-dependence in L-asparaginases
fromLotus japonicus. Planta 234:109– 122
Credali A, García-Calderón M, Dam S et al (2013) The
K+-dependent asparaginase, NSE1, is crucial for plant
growth and seed production inLotus japonicus. Plant
Cell Physiol 54:107– 118
Díaz P, Betti M, Sánchez D et al (2010) Deficiency in
plastidic glutamine synthetase alters proline metabo-
lism and transcriptomic response inLotus japonicus
under drought stress. New Phytol 188:1001– 1013
Fontaine J-X, Tercé-Laforgue T, Armengaud P et al
(2012) Characterization of a NADH-dependent gluta-
mate dehydrogenase mutant ofArabidopsisdemon-
strates the key role of this enzyme in root carbon and
nitrogen metabolism. Plant Cell 24:4044– 4065
García-Calderón M, Chiurazzi M, Espuny MR et al
(2012) Photorespiratory metabolism and nodule func-
tion: behavior ofLotus japonicusmutants deficient in
plastid glutamine synthetase. Mol Plant-Microbe
Interact 25:211– 219
Harrison J, Brugière N, Phillipson B et al (2000)
Manipulating the pathway of ammonia assimilation
through genetic engineering and breeding: conse-
quences to plant physiology and plant development.
Plant Soil 221:81– 93
Harrison J, Pou de Crescenzo M-A, SenéO et al (2003)
Does lowering glutamine synthetase activity in nod-
ules modify nitrogen metabolism and growth inLotus
japonicus? Plant Physiol 133:253– 262


Harrison J, Hirel B, Limami A (2004) Variation in nitrate
uptake and assimilation between two ecotypes of
Lotus japonicusL and their recombinant inbred lines.
Physiol Plant 120:124– 131
Ivanov A, Kameka A, Pajak A et al (2011) Arabidopsis
mutants lacking asparaginases develop normally but
exhibit enhanced root inhibition by exogenous aspar-
agine. Amino Acids 42:2307– 2318
Lea PJ, Sodek L, Parry MAJ et al (2007) Asparagine in
plants. Ann Appl Biol 150:1– 26
Limami A, Phillipson B, Ameziane R et al (1999) Does
root glutamine synthetase control plant biomass in
Lotus japonicusL.? Planta 209:495– 502
Márquez AJ, Betti M, García-Calderón M et al (2005)
Nitrate assimilation inLotus japonicus. J Exp Bot
56:1741– 1749
Orea A, Pajuelo P, Pajuelo E et al (2001) Characterisation
and expression studies of a root cDNA encoding for
ferredoxin-nitrite reductase from Lotus japonicus.
Physiol Plant 113:193– 202
Orea A, Pajuelo P, Pajuelo E et al (2002) Isolation of
photorespiratory mutants fromLotus japonicusdefi-
cient in glutamine synthetase. Physiol Plant 115:
352 – 361
Orea A, Pajuelo P, Romero JM et al (2005) Nitrate
assimilation: influence of nitrogen supply. In: Márquez
AJ (ed) Lotus japonicus handbook. Springer, Dordr-
echt, pp 295– 313
Ortega JL, Temple SJ, Bagga S et al (2004) Biochemical
and molecular characterization of transgenicLotus
japonicus plants constitutively over-expressing a
cytosolic glutamine synthetase gene. Planta 219:
807 – 818
Pajuelo P, Pajuelo E, Orea A et al (2002) Influence of
plant age and growth conditions on nitrate assimilation
in roots ofLotus japonicusplants. Funct Plant Biol
29:485– 494
Pérez-Delgado CM, García-CalderónM,Sánchez DH
et al (2013) Transcriptomic and metabolic changes
associated to photorespiratory ammonium accumula-
tion in the model legumeLotus japonicus. Plant
Physiol 162:1834– 1848
Prosser IM, Massonneau A, Smyth AJ et al (2006) Nitrate
assimilation in the forage legumeLotus japonicusL.
Planta 223:821– 834
Sandal N, Petersen TR, Murray J et al (2006) Genetics of
symbiosis inL. japonicus: recombinant inbred lines,
comparative genetic maps and map position on 35
symbiotic loci. Mol. Plant-Microbe Interact 19:80– 91
Seabra AR, Vieira CP, Cullimore JV et al (2010)Medicago
truncatulacontains a second gene encoding a plastid
located glutamine synthetase exclusively expressed in
developing seeds. BMC Plant Biol 10:183
Suárez R, Márquez J, Shishkova S et al (2003) Overex-
pression of alfalfa cytosolic glutamine synthetase in
nodules andflowers of transgenicLotus japonicus
plants. Physiol Plant 117:326– 336

11 Genes Involved in Ammonium Assimilation 123

Free download pdf