The Lotus japonicus Genome

(Steven Felgate) #1

References


Agrawal GK, Hajduch M, Graham K, Thelen JJ (2008)
In-depth investigation of the soybean seed-filling
proteome and comparison with a parallel study of
rapeseed. Plant Physiol 148(1):504– 518
Ahsan N, Donnart T, Nouri MZ, Komatsu S (2010)
Tissue-specific defense and thermo-adaptive mecha-
nisms of soybean seedlings under heat stress revealed
by proteomic approach. J Proteome Res 9
(8):4189– 4204
Anthony RM, Ravetch JV (2010) A novel role for the IgG
Fc glycan: the anti-inflammatory activity of sialylated
IgG Fcs. J Clin Immunol 30:S9–S14
Credali A, Diaz-Quintana A, Garcia-Calderon M, De la
Rosa MA, Marquez AJ, Vega JM (2011) Structural
analysis of K+dependence in L-asparaginases from
Lotus japonicus. Planta 234(1):109– 122
Credali A, Garcia-Calderón M, Dam S, Perry J, Diaz-
Quintana A, Parniske M, Wang TL, Stougaard J, Vega
JM, Márquez AJ (2013) The K+-dependent asparagi-
nase, NSE1, is crucial for plant growth and seed
production inLotus japonicus. Plant Cell Physiol 54
(1):107– 118
Dam S, Dyrlund TF, Ussatjuk A, Jochimsen B, Nielsen K,
Goffard N, Ventosa M, Lorentzen A, Gupta V,
Andersen SU, Enghild JJ, Ronson CW, Roepstorff
P, Stougaard J (2014) Proteome reference maps of the
Lotus japonicus nodule and root. Proteomics
14:230– 240
Dam S, Laursen BS,Ørnfelt JH, Jochimsen B, Staerfeldt
HH, Friis C, Nielsen K, Goffard N, Besenbacher S,
Krusell L, Sato S, Tabata S, Thøgersen IB, Enghild JJ,
Stougaard J (2009) The proteome of seed development
in the model legumeLotus japonicus. Plant Physiol
149(3):1325– 1340
Dam S, Thaysen-Andersen M, Stenkjaer E, Lorentzen A,
Roepstorff P, Packer NH, Stougaard J (2013) Com-
binedN-glycome andN-glycoproteome analysis of the
Lotus japonicusseed globulin fraction shows conser-
vation of protein structure and glycosylation in
legumes. J Proteome Res 12:3383– 3392
De Luis A, Markmann K, Cognat V, Holt DB, Charpen-
tier M, Parniske M, Stougaard J, Voinnet O (2012)
Two microRNAs linked to nodule infection and
nitrogen-fixing ability in the legumeLotus japonicus.
Plant Physiol 160(4):2137– 2154
Djemel N, Guedon D, Lechevalier A, Salon C, Miquel M,
Prosperi JM, Rochat C, Boutin JP (2005) Develop-
ment and composition of the seeds of nine genotypes
of theMedicago truncatulaspecies complex. Plant
Physiol Biochem 43(6):557–566 (PPB/Societe franc-
aise de physiologie vegetale)
Dumont E, Bahrman N, Goulas E, Valot B, Sellier H,
Hilbert JL, Vuylsteker C, Lejeune-Hénaut I, Delbreil
B (2011) A proteomic approach to decipher chilling
response from cold acclimation in pea (Pisum sativum
L.). Plant Sci Int J Experim Plant Biol 180(1):86– 98


Dyrlund TF, Poulsen ET, Scavenius C, Sanggaard KW,
Enghild JJ (2012) MS data miner: a web-based
software tool to analyze, compare, and share mass
spectrometry protein identifications. Proteomics 12
(18):2792– 2796
Fukai E, Soyano T, Umehara Y, Nakayama S, Hirakawa
H, Tabata S, Sato S, Hayashi M (2012) Establishment
of aLotus japonicusgene tagging population using the
exon-targeting endogenous retrotransposonLORE1.
Plant J 69:720– 730
Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi
M, Henry C, Kuster H, Thompson R (2007) A
combined proteome and transcriptome analysis of
developingMedicago truncatulaseeds: evidence for
metabolic specialization of maternal andfilial tissues.
Mol Cell Proteomics (MCP) 6(12):2165– 2179
Gallardo K, Le Signor C, Vandekerckhove J, Thompson
RD, Burstin J (2003) Proteomics ofMedicago trun-
catulaseed development establishes the time frame of
diverse metabolic processes related to reserve accu-
mulation. Plant Physiol 133(2):664– 682
Görg A, Weiss W, Dunn MJ (2004) Current two-
dimensional electrophoresis technology for proteo-
mics. Proteomics 4(12):3665– 3685
Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A
systematic proteomic study of seedfilling in soybean.
Establishment of high-resolution two-dimensional
reference maps, expression profiles, and an interactive
proteome database. Plant Physiol 137(4):1397– 1419
Høgslund N, Radutoiu S, Krusell L, Voroshilova V,
Hannah MA, Goffard N, Sanchez DH, Lippold F, Ott
T, Sato S, Tabata S, Liboriussen P, Lohmann GV,
Schauser L, Weiller GF, Udvardi MK, Stougaard J
(2009) Dissection of symbiosis and organ develop-
ment by integrated transcriptome analysis ofLotus
japonicusmutant and wild-type plants. PLoS ONE 4
(8):e6556
Ino Y, Ishikawa A, Nomura A, Kajiwara H, Harada K,
Hirano H (2013) Phosphoproteome analysis ofLotus
japonicusseeds. Proteomics 14(1):116
Jellouli N, Salem AB, Ghorbel A, Jouira HB (2010)
Evaluation of protein extraction methods forVitis
viniferaleaf and root proteome analysis by two-
dimensional electrophoresis. J Integr Plant Biol 52
(10):933– 940
Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama
T, Nakagawa T, Umehara Y, Suganuma N, Kawag-
uchi M (2010) How many peas in a pod? Legume
genes responsible for mutualistic symbioses under-
ground. Plant Cell Physiol 51(9):1381– 1397
Krusell L, Krause K, Ott T, Desbrosses G, Krämer U,
Sato S, Nakamura Y, Tabata S, James EK, Sandal N,
Stougaard J, Kawaguchi M, Miyamoto A, Suganuma
N, Udvardi MK (2005) The sulfate transporter SST1 is
crucial for symbiotic nitrogen fixation in Lotus
japonicusroot nodules. Plant Cell 17(5):1625– 1636
Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R,
Arrese-Igor C, Gonzalez EM (2007)Medicago trun-
catula root nodule proteome analysis reveals

206 S. Dam and J. Stougaard

Free download pdf