The Lotus japonicus Genome

(Steven Felgate) #1

Horst I, Welham T, Kelly S et al (2007) TILLING
mutants of Lotus japonicus reveal that nitrogen
assimilation andfixation can occur in the absence of
nodule-enhanced sucrose synthase. Plant Physiol
144:806– 820
Hossain MS, Umehara Y, Kouchi H (2006) A novel Fix
(−) symbiotic mutant ofLotus japonicus, Ljsym105,
shows impaired development and premature deterio-
ration of nodule infected cells and symbiosomes. Mol
Plant Microbe Interact 19:780– 788
Hossain MS, Liao JQ, James EK et al (2012)Lotus
japonicusARPC1 is required for rhizobial infection.
Plant Physiol 160:917– 928
Imaizumi-Anraku H, Kawaguchi M, Koiwa H et al (1997)
Two ineffective-nodulating mutants ofLotus japoni-
cus—Different phenotypes caused by the blockage of
endocytotic bacterial release and nodule maturation.
Plant Cell Physiol 38:871– 881
Imaizumi-Anraku H, Takeda N, Charpentier M et al
(2005) Plastid proteins crucial for symbiotic fungal
and bacterial entry into plant roots. Nature
433:527– 531
Kanamori N, Madsen LH, Radutoiu S et al (2006) A
nucleoporin is required for induction of Ca2+spiking
in legume nodule development and essential for
rhizobial and fungal symbiosis. Proc Natl Acad Sci
USA 103:359– 364
Karas B, Murray J, Gorzelak M et al (2005) Invasion of
Lotus japonicusroot hairless 1 by Mesorhizobium loti
involves the nodulation factor-dependent induction of
root hairs. Plant Physiol 137:1331– 1344
Karas B, Amyot L, Johansen C et al (2009) Conservation
of Lotus and Arabidopsis basic helix-loop-helix
proteins reveals new players in root hair development.
Plant Physiol 151:1175– 1185
Kawaguchi M (2000) Lotus japonicus“Miyakojima”
MG-20: an early flowering accession suitable for
indoor handling. J Plant Res 113:507– 509
Kawaguchi M (2003)SLEEPLESS, a gene conferring
nyctinastic movement in legume. J Plant Res
116:151– 154
Kawaguchi M, Imaizumi-Anraku H, Koiwa H et al (2002)
Root, root hair, and symbiotic mutants of the model
legumeLotus japonicus. Mol Plant Microbe Interact
15:17– 26
Kawaguchi M, Pedorosa-Harand A, Yano K et al (2005)
Lotus burttii take a position of the third corner in the
Lotusmolecular genetics triangle. DNA Res 12:69– 77
Kistner C, Winzer T, Pitzschke A et al (2005a) Seven
Lotus japonicusgenes required for transcriptional
reprogramming of the root during fungal and bacterial
symbiosis. Plant Cell 17:2217– 2229
Kistner C, Winzer T, Pitzschke A et al (2005b) Seven
Lotus japonicusgenes required for transcriptional
reprogramming of the root during fungal and bacterial
symbiosis. Plant Cell 17:2217– 2229
Kosuta S, Held M, Hossain MS et al (2011)Lotus
japonicus symRK-14uncouples the cortical and epi-
dermal symbiotic program. Plant J 67:929– 940


Krusell L, Madsen LH, Sato S et al (2002) Shoot control
of root development and nodulation is mediated by a
receptor-like kinase. Nature 420:422– 426
Krusell L, Krause K, Ott T et al (2005) The sulfate
transporter SST1 is crucial for symbiotic nitrogen
fixation inLotus japonicusroot nodules. Plant Cell
17:1625– 1636
Krusell L, Sato N, Fukuhara I et al (2011) TheClavata2
genes of pea andLotus japonicusaffect autoregulation
of nodulation. Plant J 65:861– 871
Kumagai H, Hakoyama T, Umehara Y et al (2007) A
novel ankyrin-repeat membrane protein, IGN1, is
required for persistence of nitrogen-fixing symbiosis
in root nodules ofLotus japonicus. Plant Physiol
143:1293– 1305
Madsen EB, Madsen LH, Radutoiu S et al (2003) A
receptor kinase gene of the LysM type is involved in
legume perception of rhizobial signals. Nature
425:637– 640
Maekawa-Yoshikawa M, Muller J, Takeda N (2009) The
temperature-sensitive brush mutant of the legume
Lotus japonicusreveals a link between root develop-
ment and nodule infection by rhizobia. Plant Physiol
149:1785– 1796
Magori S, Oka-Kira E, Shibata S et al (2009) TOO
MUCH LOVE, a root regulator associated with the
long-distance control of nodulation inLotus japoni-
cus. Mol Plant Microbe Interact 22:259– 268
Miyazawa H, Oka-Kira E, Sato N et al (2010) The receptor-
like kinase KLAVIER mediates systemic regulation of
nodulation and non-symbiotic shoot development in
Lotus japonicus. Development 137:4317– 4325
Murakami Y, Miwa H, Imaizumi-Anraku H et al (2006)
Positional cloning identifiesLotus japonicusNSP2, a
putative transcription factor of the GRAS Family,
required for NIN and ENOD40 Gene expression in
nodule initiation. DNA Res 13:255– 265
Murray J, Karas B, Ross L et al (2006) Genetic suppressors
of theLotus japonicushar1-1 hypernodulation pheno-
type. Mol Plant Microbe Interact 19:1082– 1091
Murray JD, Karas BJ, Sato S et al (2007) A cytokinin
perception mutant colonized by rhizobium in the
absence ofnodule organogenesis. Science 315:101– 104
Nishimura R, Hayashi M, Wu GJ et al (2002a) HAR1
mediates systemic regulation of symbiotic organ
development. Nature 420:426– 429
Nishimura R, Ohmori M, Kawaguchi M (2002b) The
novel symbiotic phenotype of enhanced-nodulating
mutant ofLotus japonicus: astray mutant is an early
nodulating mutant with wider nodulation zone. Plant
Cell Physiol 43:853– 859
Nishimura R, Ohmori M, Fujita H et al (2002c) A Lotus
basic leucine zipper protein with a RING-finger motif
negatively regulates the developmental program of
nodulation. Proc Natl Acad Sci USA 99:15206– 15210
Oreo A, Pajuelo P, Pajuelo E et al (2002) Isolation of
photorespiratory mutants fromLotus japonicusdefi-
cient in glutamine synthetase. Physiol Plant
115:352– 361

218 M. Kawaguchi and N. Sandal

Free download pdf