The Lotus japonicus Genome

(Steven Felgate) #1

Perry JA, Wang TL, Welham TJ et al (2003) A TILLING
reverse genetics tool and a web-accessible collection
of mutants of the legumeLotus japonicus. Plant
Physiol 131:866– 871
Perry J, Brachmann A, Welham T et al (2009) TILLING
inLotus japonicusidentified large allelic series for
symbiosis genes and revealed a bias in functionally
defective ethyl methanesulfonate alleles toward gly-
cine replacements. Plant Physiol 151:1281– 1291
Radutoiu S, Madsen LH, Madsen EB et al (2003) Plant
recognition of symbiotic bacteria requires two LysM
receptor-like kinases. Nature 425:585– 592
Saito K, Yoshikawa M, Yano K et al (2007) NUCLEO-
PORIN85 is required for calcium spiking, fungal and
bacterial symbioses, and seed production inLotus
japonicus. Plant Cell 19:610– 624
Sandal N, Krusell L, Radutoiu S et al (2002) A genetic
linkage map of the model legumeLotus japonicusand
strategies for fast mapping of new loci. Genetics
161:1673– 1683
Sandal N, Petersen TR, Murray J et al (2006) Genetics of
symbiosis in Lotus japonicus: recombinant inbred
lines, comparative genetic maps, and map position of
35 symbiotic loci. Mol Plant Microbe Interact
19:80– 91
Sandal N, Jin H, Rodriguez-Navarro DN et al (2012) A
set ofLotus japonicusgifu xLotus burttiirecombinant
inbred lines facilitates map-based cloning and QTL
mapping. DNA Res 19:317– 323
Schauser K, Handberg N, Sandal J et al (1998) Symbiotic
mutants deficient in nodule establishment identified
after T-DNA transformation ofLotus japonicus. Mol
Gen Genet 259:414– 423
Schauser L, Roussis A, Stiller J et al (1999) A plant
regulator controlling development of symbiotic root
nodules. Nature 402:191– 195
Senoo K, Solaiman MZ, Kawaguchi M et al (2000)
Isolation of two different phenotypes of mycorrhizal
mutants in the model legume plantLotus japonicus
after EMS-treatment. Plant Cell Physiol 41:726– 732
Stracke S, Kistner C, Yoshida S et al (2002) A plant
receptor-like kinase required for both bacterial and
fungal symbiosis. Nature 417:959– 962
Suganuma N, Nakamura Y, Yamamoto M et al (2003)
TheLotus japonicusSen1 gene controls rhizobial
differentiation into nitrogen-fixing bacteroids in nod-
ules. Mol Genet Genomics 269:312– 320
Suzaki T, Yano K, Ito M et al (2012) Positive and
negative regulation of cortical cell division during root
nodule development inLotus japonicusis accompa-
nied by auxin response. Development 139:3997– 4006
Suzaki T, Kim CS, Takeda N et al (2013) TRICOT
encodes an AMP1-related carboxypeptidase that reg-
ulates root nodule development and shoot apical
meristem maintenance inLotus japonicus. Develop-
ment 140:353– 361
Suzuki A, Suriyagoda L, Shigeyama T et al (2011)Lotus
japonicusnodulation is photomorphogenetically con-
trolled by sensing the red/far red (R/FR) ratio through


jasmonic acid (JA) signaling. Proc Natl Acad Sci USA
108:16837– 16842
Szczyglowski K, Shaw RS, Wopereis J et al (1998)
Nodule organogenesis and symbiotic mutants of the
model legumeLotus japonicus. Mol Plant Microbe
Interact 11:684– 697
Takahara M, Magori S, Soyano T et al (2013) TOO
MUCH LOVE, a Novel Kelch repeat-containing F-
box Protein, functions in the long-distance regulation
of the legume-rhizobium symbiosis. Plant Cell Physiol
54:433– 447
Takeda N, Tsuzuki S, Suzaki T et al (2013) CERBERUS
and NSP1 ofLotus japonicusare common symbiosis
genes that modulate arbuscular mycorrhiza develop-
ment. Plant Cell Physiol 54:1711– 1723
Takos A, Lai D, Mikkelsen L et al (2010) Genetic
screening identifies cyanogenesis-deficient mutants of
Lotus japonicusand reveals enzymatic specificity in
hydroxynitrile glucoside metabolism. Plant Cell
22:1605– 1619
Takos AM, Knudsen C, Lai D et al (2011) Genomic
clustering of cyanogenic glucoside biosynthetic genes
aids their identification in Lotus japonicus and
suggests the repeated evolution of this chemical
defence pathway. Plant J 68:273– 286
Tansengco ML, Hayashi M, Kawaguchi M et al (2003)
Crinkle, a novel symbiotic mutant that affects the
infection thread growth and alters the root hair,
trichome, and seed development inLotus japonicus.
Plant Physiol 131:1054– 1063
Tirichine L, Imaizumi-Anraku H, Yoshida S et al (2006a)
Deregulation of a Ca2+/calmodulin-dependent kinase
leads to spontaneous nodule development. Nature
441:1153– 1156
Tirichine L, James EK, Sandal N et al (2006b) Sponta-
neous root-nodule formation in the model legume
Lotus japonicus: a novel class of mutants nodulates in
the absence of rhizobia. Mol Plant Microbe Interact
19:373– 382
Tirichine L, Sandal N, Madsen LH (2007) A gain-of-
function mutation in a cytokinin receptor triggers
spontaneous root nodule organogenesis. Science
315:104– 107
Tominaga A, Nagata M, Futsuki K et al (2009) Enhanced
nodulation and nitrogenfixation in the abscisic acid
low-sensitive mutant enhanced nitrogenfixation1 of
Lotus japonicus. Plant Physiol 151:1965– 1976
Vriet C, Welham T, Brachmann A et al (2010) A suite of
Lotus japonicusstarch mutants reveals both conserved
and novel features of starch metabolism. Plant Physiol
154:643– 655
Wang Z, Chen J, Weng L et al (2013) Multiple
components are integrated to determine leaf complex-
ity inLotus japonicus. J Integr Plant Biol 55:419– 433
Yan J, Cai X, Luo J et al (2010) The REDUCED
LEAFLET genes encode key components of the trans-
acting small interfering RNA pathway and regulate
compound leaf and flower development in Lotus
japonicus. Plant Physiol 152:797– 807

19 Wild Accessions and Mutant Resources 219

Free download pdf