The Lotus japonicus Genome

(Steven Felgate) #1

Vickers K et al (2005) Plastid proteins crucial for
symbiotic fungal and bacterial entry into plant roots.
Nature 433:527– 531
Kanamori N, Madsen LH, Radutoiu S, Frantescu M,
Quistgaard EMH, Miwa H, Downie JA, James EK,
Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura
Y, Tabata S, Sandal N, Stougaard J (2006) A
nucleoporin is required for induction of Ca2+ spiking
in legume nodule development and essential for
rhizobial and fungal symbiosis. Proc Nat Acad Sci
USA 103:359– 364
Kapranov P, M. Routt S, Bankaitis VA, de Bruijn FJ,
Szczyglowski K (2001) Nodule-specific regulation of
phosphatidylinositol transfer protein expression in
Lotus japonicus. Plant Cell 13:1369-1382
Koressaar T, Remm M (2007) Enhancements and mod-
ifications of primer design program Primer3. Bioin-
formatics 23:1289– 1291
Krokida A, Delis C, Geisler K, Garagounis C, Tsikou D,
Peña-Rodríguez LM, Katsarou D, Field B, Osbourn
AE, Papadopoulou KK (2013) A metabolic gene
cluster inLotus japonicusdiscloses novel enzyme
functions and products in triterpene biosynthesis. New
Phytol 200:675– 690
Krusell L, Krause K, Ott T, Desbrosses G, Krämer U,
Sato S, Nakamura Y, Tabata S, James EK, Sandal N,
Stougaard S, Kawaguchi M, Miyamoto A, Suganuma
N, Udvardi MK (2005) The sulphate transporter SST1
is crucial for symbiotic nitrogenfixation inLotus
japonicusroot nodules. Plant Cell 17:1625– 1636
Krusell L, Sato N, Fukuhara I, Koch BEV, Grossmann C,
Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakag-
awa T, Sato S, Tabata S, Duc G, Perry J, Wang TL,
Kawaguchi M, Stougaard J (2011) The Clavata2 genes
of pea andLotus japonicusaffect autoregulation of
nodulation and shoot architecture. Plant J 65:861– 871
Kumar P, Henikoff S, Ng PC (2009) Predicting the effects
of coding non-synonymous variants on protein function
using the SIFT algorithm. Nat Protoc 4:1073– 1081
Le Signor C, Savois V, Aubert G, Verdier J, Nicolas M,
Pagny G, Moussy F, Sanchez M, Baker D, Clarke J,
Thompson R (2009) Optimizing TILLING popula-
tions for reverse genetics inMedicago truncatula.
Plant Biotechnol 7:430– 441
Lohmann GV, Shimoda Y, Nielsen MW, Jørgensen FG,
Grossmann C, Sandal N, Sørensen K, Thirup S,
Madsen LH, Tabata S, Sato S, Stougaard J, Radutoiu
S (2010) Evolution and regulation of the Lotus
japonicusLysM receptor gene family. Mol Plant-
Microbe Interact 23:510– 521
Maekawa-Yoshikawa M, Müller J, Takeda N, Maekawa
T, Sato S, Tabata S, Perry J, Wang TL, Groth M,
Brachmann A, Parniske M (2009) The temperature-
sensitive brush mutant of the legumeLotus japonicus
reveals a link between root development and nodule
infection by rhizobia. Plant Physiol 149:1785– 1796
McCallum CM, Comai L, Greene EA, Henikoff S (2000)
Targeting Induced Local Lesions IN Genomes (TILL-
ING) for plant functional genomics. Plant Physiol
123:439– 442


Morant AV, Bjarnholt N, Kragh ME, Kjærgaard CH,
Jørgensen K, Paquette SM, Piotrowski M, Imberty A,
Olsen CE, Møller BL, Bak S (2008) Theβ-Glucosidases
responsible for bioactivation of hydroxynitrile gluco-
sides inLotus japonicus. Plant Physiol 147:1072– 1091
Murray JD, Karas BJ, Sato S, Tabata S, Amyot L,
Szczyglowski K (2007) A cytokinin perception mutant
colonized by rhizobium in the absence of nodule
organogenesis. Science 315:101– 104
Nagata M, Murakami EI, Shimoda Y, Shimoda-Sasakura
F, Kucho KI, Suzuki A, Abe M, Higashi S, Uchiumi T
(2008) Expression of a class 1 hemoglobin gene and
production of nitric oxide in response to symbiotic and
pathogenic bacteria inLotus japonicus. Mol Plant-
Microbe Interact 21:1175– 1183
Olsen O, Wang X, Von Wettstein D (1993) Sodium azide
mutagenesis: preferential generation of AT→GC
transitions in the barleyAntl8gene. Proc Nat Acad Sci
USA 90:8043– 8047
Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-
Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin
A, Ouabbou H, Labhilili M, Phillips AL (2009)
Mutation discovery for crop improvement. J Exp Bot
60:2817– 2825
Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM,
Yoshida S, Parniske M (2003) A TILLING reverse
genetics tool and a web accessible collection of
mutants of the legumeLotus japonicus. Plant Physiol
131:866– 871
Perry J, Welham T, Cheminant S, Parniske M, Wang T
(2005) TILLING. In: Márquez AJ (ed)Lotus japonicus
HandbookSpringer,Dordrecht,Chapter5.3,pp197– 210
Perry J, Welham T, Brachmann A, Binder A, Charpentier
M, Groth M, Haage K, Markmann K, Wang TL,
Parniske M (2009) TILLING inLotus japonicus
identified large allelic series for symbiosis genes and
revealed a bias in non-functional alleles towards hits
in in glycine codons. Plant Physiol 151:1281– 1291
Roberts NJ, Brigham J, Wu B, Murphy JB, Volpin H,
Phillips DA, Etzler ME (1999) A nod factor-binding
lectin is a member ofa distinct class of apyrases that may
be unique to the legumes. Mol Gen Genet 262:261– 267
Roberts NJ, Morieri G, Kalsi G, Rose A, Stiller J,
Edwards A, Xie F, Gresshoff PM, Oldroyd GED,
Downie JA, Etzler ME (2013) Rhizobial and mycor-
rhizal symbioses inLotus japonicusrequire lectin
nucleotide phosphohydrolase, which acts upstream of
calcium signalling. Plant Physiol 161:556– 567
Serna-Sanz A, Parniske M, Peck SC (2011) Phosphopro-
teome analysis ofLotus japonicusroots reveals shared
and distinct components of symbiosis and defense.
Mol Plant-Microbe Interact 24:932– 937
Shelton D, Stranne M, Mikklesen L, Pakseresht N,
Welham T, Hiraka H, Tabata S, Sato S, Paquette S,
Wang TL, Martin C, Bailey P (2012) Transcription
factors ofLotus japonicus: regulation of isoflavonoid
biosynthesis requires co-ordinated changes in tran-
scription factor activity. Plant Physiol 159:531– 547
Takanashi K, Sugiyama A, Sato S, Tabata S, Yazaki K
(2012) LjABCB1, an ATP-binding cassette protein

242 T.L. Wang and F. Robson

Free download pdf