The Lotus japonicus Genome

(Steven Felgate) #1

Imaizumi-Anraku H, Kawaguchi M, Koiwa H et al (1997)
Two ineffective-nodulating mutants ofLotus japoni-
cus—Different phenotypes caused by the blockage of
endocytotic bacterial release and nodule maturation—.
Plant Cell Physiol 38:871– 881
Kawaguchi M, Imaizumi-Anraku H, Koiwa H et al (2002)
Root, root hair, and symbiotic mutants of the model
legumeLotus japonicus. Mol Plant-Microbe Interact
15:17– 26
Kneen BE, LaRue TA, Hirsch AM et al (1990)sym 13—
A gene conditioning ineffective nodulation inPisum
sativum. Plant Physiol 94:899– 905
Kouchi H, Shimomura K, Hata S et al (2004) Large-scale
analysis of gene expression profiles during early
stages of root nodule formation in a model legume,
Lotus japonicus. DNA Res 11:263– 274
Kouchi H, Imaizumi-Anraku H, Hayashi M et al (2010)
How many peas in a pod? Legume genes responsible
for mutualistic symbioses underground. Plant Cell
Physiol 51:1381– 1397
Kouchi H (2011) Symbiotic nitrogenfixation. In: Ashihara
H, Crozier A, Komamine A (eds) Plant Metabolism and
Biotechnology. Wiley, Chichester, pp 67– 102
Krusell L, Krause K, Ott T et al (2005) The sulfate
transporter SST1 is crucial for symbiotic nitrogen
fixation inLotus japonicusroot nodules. Plant Cell
17:1625– 1636
Kumagai H, Hakoyama T, Umehara Y et al (2007) A novel
ankyrin-repeat membrane protein, IGN1, is required for
persistence of nitrogen-fixing symbiosis in root nodules
ofLotus japonicus. Plant Physiol 143:1293– 1305
Mergaert P, Uchiumi T, Alunni B et al (2006) Eukaryotic
control on bacterial cell cycle and differentiation in the
Rhizobium–legume symbiosis. Proc Natl Acad Sci
USA 103:5230– 5235
Nomura M, Mai HT, Fujii M et al (2006) Phosphoenol-
pyruvate carboxylase plays a crucial role in limiting
nitrogenfixation inLotus japonicusnodules. Plant
Cell Physiol 47:613– 621
Oka-Kira E, Kawaguchi M (2006) Long-distance signal-
ing to control root nodule number. Curr Opin Plant
Biol 9:496– 502


Ott T, van Dongen JT, Günther C et al (2005) Symbiotic
leghemoglobins are crucial for nitrogenfixation in
legume root nodules but not for general plant growth
and development. Curr Biol 15:531– 535
Sandal N, Petersen TR, Umehara Y et al (2006) Genetics of
symbiosis inLotus japonicus: recombinant inbred lines,
comparative genetic maps, and map position of 35
symbiotic loci. Mol Plant-Microbe Interact 19:80– 91
Sato S, Nakamura Y, Kaneko T et al (2008) Genome
structure of the legume,Lotus japonicus. DNA Res
15:227– 239
Schauser L, Handberg K, Sandal N et al (1998) Symbiotic
mutants deficient in nodule establishment identified
after T-DNA transformation ofLotus japonicus. Mol
Gen Genet 259:414– 423
Suganuma N, Nakamura Y, Yamamoto M et al (2003)
TheLotus japonicus Sen1gene controls rhizobial
differentiation into nitrogen-fixing bacteroides in nod-
ules. Mol Gen Genomics 269:312– 320
Szczyglowski K, Shaw RS, Wopereis J et al (1998)
Nodule organogenesis and symbiotic mutants of the
model legumeLotus japonicus. Mol Plant-Microbe
Interact 7:684– 697
Tsyganov VE, Morzhina EV, Stefanov AY et al (1998)
The pea (Pisum sativumL.) genessym33andsym40
control infection thread formation and root nodule
function. Mol Gen Genet 259:491– 503
Udvardi MK, Day DA (1997) Metabolite transport across
symbiotic membranes of legume nodules. Annu Rev
Plant Physiol Plant Mol Biol 48:493– 523
Udvardi MK, Poole PS (2013) Transport and metabolism
in legume-rihzobai symbioses. Annu Rev Plant
Biol 64:781– 805
Vance CP, Johnson LEB (1983) Plant determined inef-
fective nodules in alfalfa (Medicago sativa): structural
and biochemical comparisons. Can J Bot 61:93– 106
White J, Prell J, James EK et al (2007) Nutrient sharing
between symbionts. Plant Physiol 144:604– 614
Wienkoop S, Saalbach G (2003) Proteome analysis: novel
proteins identified at the peribacteroid membrane
fromLotus japonicusroot nodules. Plant Physiol 131:
1080 – 1090

84 N. Suganuma

Free download pdf