Front Matter

(nextflipdebug5) #1

 


Contents xi



  • Growth and Use 1 Fundamental Biochemical and Biotechnological Principles of Biomass

  • 1.1 Learning Objectives Manfred Kircher

  • 1.2 Comparison of Fossil-BasedversusBio-Based Raw Materials

  • 1.2.1 The Nature of Fossil Raw Materials

  • 1.2.2 Industrial Use

  • 1.2.2.1 Energy

  • 1.2.2.2 Chemicals

  • 1.2.3 Expectancy of Resources

  • 1.2.4 Green House Gas (GHG) Emission

  • 1.2.5 Regional Pillars of Competitiveness

  • 1.2.6 Questions for Further Consideration

  • 1.3 TheNatureofBio-BasedRawMaterials

  • 1.3.1 Oil Crops

  • 1.3.2 Sugar Crops

  • 1.3.3 Starch Crops

  • 1.3.4 Lignocellulosic Plants

  • 1.3.5 Lignocellulosic Biomass

  • 1.3.6 Algae

  • 1.3.7 Plant Breeding

  • 1.3.8 Basic Transformation Principles

  • 1.3.8.1 First Generation

  • 1.3.8.2 Second Generation

  • 1.3.8.3 Third Generation

  • 1.3.9 Industrial Use

  • 1.3.9.1 Energy

  • 1.3.9.2 Chemicals

  • 1.3.9.3 Biocatalysts

  • 1.3.9.4 Pharmaceuticals

  • 1.3.9.5 Nutrition

  • 1.3.9.6 Polymers

  • 1.3.10 Expectancy of Resources vi Contents

  • 1.3.11 Green House Gas Emission

  • 1.3.12 Regional Pillars of Competitiveness

  • 1.3.13 Questions for Further Consideration

  • 1.4 General Considerations Surrounding Bio-Based Raw Materials

  • 1.4.1 Economical Challenges

  • 1.4.2 Feedstock Demand Challenges

  • 1.4.3 Ecological Considerations

  • 1.4.4 Societal Considerations

  • 1.4.4.1 Food Security

  • 1.4.4.2 Public Acceptance

  • 1.5 Research Advances Made Recently

  • 1.5.1 First-Generation Processes and Products

  • 1.5.2 Second-Generation Processes and Products

  • 1.5.3 Third-Generation Processes and Products

  • 1.6 Prominent Scientists Working in this Arena

  • 1.7 Summary

  • 1.8 Study Problems

  • 1.9 Key References

    • References



  • 2 Fundamental Science and Applications for Biomaterials

  • 2.1 Introduction Ali S. Ayoub and Lucian A. Lucia

    • Lignocellulosics? 2.2 What are the Biopolymers that Encompass the Structure and Function of



  • 2.2.1 Cellulose

  • 2.2.2 Heteropolysaccharides

  • 2.2.3 Lignin

  • 2.2.4 The Discovery of Cellulose and Lignin

  • 2.3 Chemical Reactivity of Cellulose, Heteropolysaccharides, and Lignin

  • 2.3.1 Cellulose Reactivity

  • 2.3.1.1 Reactivity Measurements

  • 2.3.1.2 Dissolving-Grade Pulps

  • 2.3.1.3 Converting Paper-Grade Pulps into Dissolving-Grade Pulps

  • 2.3.2 Hemicellulose Reactivity

  • 2.3.2.1 Structural Characterization of Hemicellulose

  • 2.3.3 Lignin Reactivity

  • 2.4 Composite as a Unique Application for Renewable Materials

  • 2.4.1 Rationale and Significance

  • 2.4.2 Starch-Based Materials

  • 2.4.3 Starch-Based Plastics

  • 2.4.3.1 Novamont

  • 2.4.3.2 Cereplast

  • 2.4.3.3 Ecobras

  • 2.4.3.4 Biotec

  • 2.4.3.5 Plantic

  • 2.4.3.6 Biolice Contents vii

  • 2.4.3.7 KTM Industries

  • 2.4.3.8 Cerestech, Inc.

  • 2.4.3.9 Teknor Apex

  • 2.5 Question for Further Consideration

    • References



  • 3 Conversion Technologies

  • 3.1 Learning Objectives Maurycy Daroch

  • 3.2 Energy Scenario at Global Level

  • 3.2.1 Why Our Energy is so Important?

  • 3.2.2 Black Treasure Chest

  • 3.2.3 Conventional Fossil Resources and their Alternatives

  • 3.2.3.1 Light Crude Oil (Conventional Oil)

  • 3.2.3.2 Coal

  • 3.2.3.3 Natural Gas

  • 3.2.3.4 Shale Oil (Tight Oil)

  • 3.2.3.5 Oil Sands, Bitumen Extra Heavy Oil

  • 3.2.3.6 Shale Gas

  • 3.2.3.7 Methane (Gas) Hydrates

  • 3.2.3.8 EROI – How Much Fuel in Fuel?

  • 3.2.3.9 Environmental Effects of Fossil Resource Utilisation

  • 3.3 Biomass

  • 3.3.1 Renewable Energy and Renewable Carbon

  • 3.3.2 Why Different Types of Biomass have the Properties they Have?

  • 3.4 Biomass Conversion Methods

  • 3.4.1 Conversion of Biochemical Energy Perspective

  • 3.4.2 Overview of Biomass Conversion Technologies

  • 3.4.3 Thermochemical Conversion of Biomass

  • 3.4.4 Biomass Combustion

  • 3.4.5 Gasification

  • 3.4.6 Pyrolysis

  • 3.4.7 Conversion of Oily Feedstocks

  • 3.4.8 Biochemical Conversion of Biomass

  • 3.4.8.1 Aerobic and Anaerobic Metabolisms

  • 3.4.8.2 Central Metabolic Pathway under Anaerobic Conditions

  • 3.4.9 Harvesting Energy from Biochemical Processes

  • 3.4.9.1 Ethanol Fermentation

  • 3.4.9.2 ABE Fermentation

  • 3.4.9.3 Biohydrogen

  • 3.4.9.4 Biomethane

    • Bioenergy and Biomaterials 3.5 Metrics to Assist the Transition Towards Sustainable Production of



  • 3.5.1 EROI – Primary Metrics of Energy Carrier Efficiency

  • 3.5.2 LCA – Sustainability Determinant

  • 3.5.3 Environmental Assessment of Bioenergy Production Processes

  • 3.5.3.1 Impacts Related to Land-Use Change viii Contents

  • 3.5.3.2 Impacts of Feedstock Cultivation

  • 3.5.3.3 Impacts of Conversion Process

  • 3.5.3.4 Impacts of Product Use

  • 3.5.4 Sustainability Metrics in Biomass and Bioenergy Policies

  • 3.5.5 Renewable and Non-Renewable Carbon – Taxation and Subsidies

  • 3.6 Summary

  • 3.7 Key References

    • References



  • 4 Characterization Methods and Techniques

  • 4.1 Philosophy Statement Noppadon Sathitsuksanoh and Scott Renneckar

  • 4.2 Understanding the Characteristics of Biomass

    • Analysis 4.3 Taking Precautions Prior to Setting Up Experiments for Biomass



  • 4.4 Classifying Biomass Sizes for Proper Analysis

    • Analysis 4.5 Moisture Content of Biomass and Importance of Drying Samples Prior to



  • 4.6 When the Carbon is Burned

  • 4.7 Structural Cell Wall Analysis, What To Look For

  • 4.8 Hydrolyzing Biomass and Determining Its Composition

  • 4.8.1 Analyzing Filtrate by HPLC for Monosaccharide Contents

  • 4.8.2 Choosing the HPLC Column and Its Operating Conditions

  • 4.9 Determining Cell Wall Structures Through Spectroscopy and Scattering

  • 4.9.1 Probing the Chemical Structure of Biomass

  • 4.9.1.1 X-Ray Diffraction (XRD)

  • 4.9.1.2 Cross-polarization/Magic Angle Spinning (CP/MAS)^13 CNMR

  • 4.9.1.3 Fourier-Transform Infrared Spectroscopy (FTIR)

  • 4.9.1.4 Raman Analysis

  • 4.10 Examining the Size of the Biopolymers: Molecular Weight Analysis

  • 4.11 Intricacies of Understanding Lignin Structure

  • 4.11.1^13 CNMR

  • 4.11.2^31 PNMR

  • 4.11.3 2D HSQC

  • 4.11.4 Methoxyl Content Determination

  • 4.11.4.1^1 HNMR

  • 4.11.4.2 Hydriodic Acid

  • 4.11.4.3 Direct Methanol

  • 4.12 Questions for Further Consideration

    • References

    • to Forest Biomaterials 5 Introduction to Life-Cycle Assessment and Decision Making Applied



  • 5.1 Introduction Jesse Daystar and Richard Venditti

  • 5.1.1 What is LCA?

  • 5.1.1.1 History Contents ix

  • 5.1.2 LCA for Decision Making

  • 5.1.2.1 Eco-labels

  • 5.2 LCA Components Overview

  • 5.2.1 Goal and Scope Definition

  • 5.2.2 Inventory Analysis

  • 5.2.3 Life-Cycle Impact Assessment

  • 5.2.4 Interpretation

  • 5.3 Life-Cycle Assessment Steps

  • 5.3.1 Goal, Scope, System Boundaries

  • 5.3.1.1 Goal Definition

  • 5.3.1.2 Scope Definition

  • 5.3.1.3 Functional Unit

  • 5.3.1.4 Cutoff Criteria

  • 5.3.1.5 Problems Set – Goal and Scope Definition

  • 5.3.2 Life-Cycle Inventory

  • 5.3.2.1 Preparation of Data Collection Based on Goal and Scope

  • 5.3.2.2 Data Collection

  • 5.3.2.3 Data Quality

  • 5.3.2.4 Coproduct Treatment – Allocation

  • 5.3.2.5 Relating Data to the Unit Process

  • 5.3.2.6 Relating Data to the Functional Unit

  • 5.3.2.7 Data Aggregation

  • 5.3.2.8 LCI Data Interpretation

  • 5.3.2.9 Problems Set – Life-Cycle Inventory

  • 5.3.2.10 Mandatory Elements

  • 5.3.2.11 Classification

  • 5.3.2.12 Characterization

  • 5.3.2.13 Optional Elements

  • 5.3.2.14 Life Cycle Impact Assessment Interpretation

  • 5.3.2.15 Problems Set –Life-Cycle Impact Assessment

  • 5.4 LCA Tools for Forest Biomaterials

  • 5.4.1 FICAT

  • 5.4.2 GREET Model

    • References

    • Building Blocks 6 First Principles of Pretreatment and Cracking Biomass to Fundamental



  • 6.1 Introduction Amir Daraei Garmakhany and Somayeh Sheykhnazari

  • 6.1.1 What Is Lignocellulosic Material?

  • 6.1.1.1 Lignocellulosic Materials

  • 6.1.1.2 Cellulose

  • 6.1.1.3 Hemicellulose

  • 6.1.1.4 Lignin

    • Biomass? 6.2 What Difference Should Be Considered Between Wood and Agricultural



  • 6.2.1 Intrapolymeric Bonds x Contents

  • 6.2.2 Polymeric Inter Bonds

    • Components 6.2.3 Functional Groups and Chemical Characteristics of Lignocellulosic Biomass



  • 6.2.4 Aromatic Ring

  • 6.2.5 Hydroxyl Group

  • 6.2.6 Ether Bond

  • 6.2.7 Ester Bond

  • 6.2.8 Hydrogen Bond

  • 6.3 Define Pretreatment

  • 6.3.1 What Is the Purpose of Pretreatment?

  • 6.4 Steps of Production of Cellulosic Ethanol

  • 6.4.1 Pretreatment

  • 6.4.2 Hydrolysis

  • 6.4.3 What Are the Inhibitors for Biomass Carbohydrate Hydrolysis?

  • 6.4.4 Fermentation

  • 6.4.5 Formation of Fermentation Inhibitors

  • 6.4.6 Sugars Degradation Products

  • 6.4.7 Lignin Degradation Products

  • 6.4.8 Acetic Acid

  • 6.4.9 Inhibitory Extractives

  • 6.4.10 Heavy Metal Ions

  • 6.4.11 Separation

    • Technology? 6.5 What Are the Key Considerations for Making a Successful Pretreatment



  • 6.5.1 Effect of Pretreatment on Hydrolysis Process

  • 6.6 What Are the General Methods Used in Pretreatment?

  • 6.7 What Is Currently Being Done and What Are the Advances?

  • 6.7.1 Steam Explosion

  • 6.7.2 Hydrothermolysis

  • 6.7.3 High-Energy Irradiations

  • 6.7.4 Acid Pretreatment

  • 6.7.5 Mechanism of Acid Hydrolysis

  • 6.7.6 Alkaline Pretreatment

  • 6.7.7 Ammonia Pretreatment

  • 6.7.8 Ammonia Recycle Percolation (ARP)

  • 6.7.9 Ammonia Fiber Expansion (AFEX)

  • 6.7.10 Defects of AFEX Process

  • 6.7.11 Enzymatic Pretreatment

  • 6.7.12 Advantages of Biological Pretreatment

  • 6.7.13 Defects of Biological Pretreatment

  • 6.8 Summary

    • References

    • Enzymatic Polymerization 7 Green Route to Prepare Renewable Polyesters from Monomers:



  • 7.1 Philosophic Statement Toufik Naolou

  • 7.2 Introduction

    • (Lactones and Lactides) 7.3 Lipase-Catalyzed Ring-Opening Polymerizations of Cyclic Monomeric Esters



  • 7.4 Lipase-Catalyzed Polycondensation

  • 7.4.1 Dicarboxylic Acid or Its Esters with Diols

  • 7.4.2 Dicarboxylic Acid or Its Esters with Polyols

  • 7.4.3 Polyesters from Fatty Acid-Based Monomers

    • Diols 7.4.3.1 Lipase-Catalyzed Polycondensation ofα,ω-Dicarboxylic Acids and



  • 7.4.3.2 Lipase-Catalyzed Polycondensation of Hydroxy Fatty Acids

  • 7.4.3.3 Fatty Acids as Side Chains to Modify Functional Polyesters

  • 7.4.4 Polyester Using Furan as Building Block

  • 7.4.5 Conclusions and Remarks

  • 7.4.6 Questions for Further Consideration

    • List of Abbreviations

    • References

    • Composites 8 Oil-Based and Bio-Derived Thermoplastic Polymer Blends and



  • 8.1 Introduction Alessia Quitadamo, Valerie Massardier and Marco Valente

  • 8.2 Oil-Based and Bio-Derived Thermoplastic Polymer Blends

    • Polymers 8.2.1 Comparison Between Oil-Based and Bio-Derived Thermoplastic



  • 8.2.2 Thermoplastics Blends

  • 8.3 Thermoplastic Composites with Natural Fillers

  • 8.3.1 Wood–Plastic Composites

  • 8.3.2 Waste Paper as Filler in Thermoplastic Composites

  • 8.4 Conclusion

  • 8.5 Questions for Further Consideration

    • References

    • Index



Free download pdf