232 Introduction to Renewable Biomaterials
9 A.L. Andrady, Microplastics in the marine environment,Mar. Pollut. Bull, 62 (8),
1596–1605 (2011).
10 A. Sivan, New perspectives in plastic biodegradation,Curr. Opin. Biotechnol, 22 (3),
422–426 (2011).
11 G.Q. Chen, A microbial polyhydroxyalkanoates (PHA) based bio- and materials
industry,Chem. Soc. Rev, 38 (8), 2434–2446 (2009).
12 J.E. Puskas, K.S. Seo, and M.Y. Sen, Green polymer chemistry: Precision synthesis
of novel multifunctional poly(ethylene glycol)s using enzymatic catalysis,Eur.
Polym. J, 47 (4), 524–534 (2011).
13 R.A. Gross, M. Ganesh, and W. Lu, Enzyme-catalysis breathes new life into
polyester condensation polymerizations,Trends Biotechnol, 28 (8), 435–443 (2010).
14 S. Kobayashi, Lipase-catalyzed polyester synthesis – A green polymer chemistry,
Proc. Japan Acad. Ser B, 86 (4), 338–365 (2010).
15 S. Kobayashi, and A. Makino, Enzymatic polymer synthesis: an opportunity for
green polymer chemistry,Chem. Rev, 109 (11), 5288–5353 (2009).
16 S. Kobayashi, Enzymatic ring-opening polymerization and polycondensation for the
green synthesis of polyesters,Polym. Adv. Technol, 26 (7), 677–686 (2015).
17 B. Yeniad, H. Naik, and A. Heise, Lipases in polymer chemistry,Adv. Biochem. Eng.
Biotechnol, 125 , 69–95 (2011).
18 A. Löfgren, A.C. Albertsson, P. Dubois, and R. Jérôme, Recent advances in
ring-opening polymerization of lactones and related compounds,J. Macromol.
Sci. Part C Polym. Rev, 35 (3), 379–418 (1995).
19 N. Mileti ́c, K. Loos, R.A. Gross, Enzymatic Polymerization of Polyester, in K. Loos
(Ed.),Biocatalysis in Polymer Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany, pp. 83–129 (2010).
20 X. Lou, C. Detrembleur, and R. Jérôme, Living cationic polymerization of
δ-valerolactone and synthesis of high molecular weight homopolymer and
asymmetric telechelic and block copolymer,Macromolecules, 35 (4), 1190–1195
(2002).
21 D.W. Hwang, P. Kashinathan, J.M. Lee,et al., Production ofγ-butyrolactone from
biomass-derived 1,4-butanediol over novel copper-silica nanocomposite,Green
Chem, 13 (7), 1672–1675 (2011).
22 G. Budroni, and A. Corma, Gold and gold–platinum as active and selective catalyst
for biomass conversion: Synthesis ofγ-butyrolactone and one-pot synthesis of
pyrrolidone.J. Catal, 257 (2), 403–408 (2008).
23 I. Meynial-Salles, S. Dorotyn, and P. Soucaille, A new process for the continuous
production of succinic acid from glucose at high yield, titer, and productivity,
Biotechnol. Bioeng, 99 (1), 129–135 (2008).
24 A. Corma, S. Iborra, and A. Velty, Chemical routes for the transformation of
biomass into chemicals.Chem. Rev, 107 (6), 2411–2502 (2007).
25 L. Wang, K. Thai, and M. Gravel, NHC-catalyzed ring expansion of
oxacycloalkane-2-carboxaldehydes: A versatile synthesis of lactones,Org. Lett,
11 (4), 891–893 (2009).
26 T. Buntara, S. Noel, and P.H. Phua,et al., Caprolactam from renewable resources:
catalytic conversion of 5-Hydroxymethylfurfural into caprolactone,Angew. Chemie
Int. Ed, 50 (31), 7083–7087 (2011).