Front Matter

(nextflipdebug5) #1

 


Green Route to Prepare Renewable Polyesters from Monomers: Enzymatic Polymerization 235

60 C.K. Williams, Synthesis of functionalized biodegradable polyesters,Chem. Soc. Rev,
36 (10), 1573–1580 (2007).
61 T.Naolou,V.M.Weiss,D.Conrad,et al., Fatty Acid Modified Poly(glycerol
adipate) - Polymeric Analogues of Glycerides, inTailored Polymer Architectures
for Pharmaceutical and Biomedical Applications,vol. 1135 , American Chemical
Society, Washington, DC, pp. 39–52 (2013).
62 Y.F. Wang, J.J. Lalonde, M. Momongan,et al., Lipase-catalyzed irreversible
transesterifications using enol esters as acylating reagents: preparative enantio- and
regioselective syntheses of alcohols, glycerol derivatives, sugars and organometallics,
J. Am. Chem. Soc, 110 (21), 7200–7205 (1988).
63 K.R. Kiran, and S. Divakar, Lipase-catalysed polymerization of lactic acid and its
film forming properties,World J. Microbiol. Biotechnol, 19 (8), 859–865 (2003).
64 S.Okumura,M.Iwai,andY.Tominaga,SynthesisofesteroligomerbyAspergillus
nigerlipase,Agric. Biol. Chem, 48 (11), 2805–2808 (1984).
65 K.M. Draths, and J.W. Frost, Environmentally compatible synthesis of adipic acid
from d-glucose,J. Am. Chem. Soc, 116 (1), 399–400 (1994).
66 H. Yim, R. Haselbeck, W. Niu,et al., Metabolic engineering of Escherichia coli for
direct production of 1,4-butanediol,Nat. Chem. Biol, 7 (7), 445–452 (2011).
67 F. Binns, S.M. Roberts, A. Taylor, and C.F. Williams, Enzymic polymerisation of an
unactivated diol/diacid system,J. Chem. Soc. Perkin Trans, 1 (8), 899–904 (1993).
68 H. Uyama, S. Yaguchi, and S. Kobayashi, Lipase-catalyzed polycondensation of
dicarboxylic acid-divinyl esters and glycols to aliphatic polyesters,J. Polym. Sci. Part
APolym.Chem, 37 (15), 2737–2745 (1999).
69 T. Takamoto, H. Uyama, and S. Kobayashi, Lipase-catalyzed synthesis of aliphatic
polyesters in supercritical carbon dioxide,e-Polymers, 1 (1) (2001).
70 H. Uyama, K. Inada, and S. Kobayashi, Lipase-catalyzed synthesis of aliphatic
polyesters by polycondensation of dicarboxylic acids and glycols in solvent-free
system.Polym. J, 32 (5), 440–443 (2000).
71 Y.Y. Linko, Z.L. Wang, and J. Seppälä, Lipase-catalyzed synthesis of poly(1,4-butyl
sebacate) from sebacic acid or its derivatives with 1,4-butanediol,J. Biotechnol,
40 (2), 133–138 (1995).
72 J. Xu, and B.H. Guo, Poly(butylene succinate) and its copolymers: Research,
development and industrialization,Biotechnol. J, 5 (11), 1149–1163 (2010).
73 J.M. Pinazo, M.E. Domine, V. Parvulescu, and F. Petru, Sustainability metrics for
succinic acid production: A comparison between biomass-based and petrochemical
routes,Catal. Today, 239 , 17–24 (2015).
74 H. Azim, A. Dekhterman, Z. Jiang, and R.A. Gross,Candida antarcticalipase
B-catalyzed synthesis of poly(butylene succinate): Shorter chain building blocks also
work,Biomacromolecules, 7 (11), 3093–3097 (2006).
75 M. Rose, and R. Palkovits, Cellulose-based sustainable polymers: State of the art
and future trends,Macromol. Rapid Commun, 32 (17), 1299–1311 (2011).
76 Y. Jiang, G.O.R.A. van Ekenstein, A.J.J. Woortman, and K. Loos, Fully biobased
unsaturated aliphatic polyesters from renewable resources: enzymatic synthesis,
characterization, and properties,Macromol. Chem. Phys, 215 (22), 2185–2197
(2014).
77 Y. Jiang, A. Woortman, G. Alberda van Ekenstein, and K. Loos, Environmentally
benign synthesis of saturated and unsaturated aliphatic polyesters via enzymatic
Free download pdf