Front Matter

(nextflipdebug5) #1

 


Fundamental Science and Applications for Biomaterials 61

9 M. Norgren and H. Edlund. Lignin: Recent advances and emerging applications.
Current Opinion in Colloid and Interface Science, 19 , 5, 409–416 (2014).
10 S. Laurichesse and L. Averous. Chemical modification of lignins: Towards biobased
polymers.Progress in Polymer Science, 39 , 7, 1266–1290 (2014).
11 H. P. S. A. Khalil, M. S. Alwani, and A. K. M. Omar. Chemical composition,
anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fiber.
BioResources, 1 , 2, 220–232 (2006).
12 F. S. Chakar and A. J. Ragauskas. Review of current and future softwood kraft lignin
process chemistry.Industrial Crops and Products, 20 , 2, 131–141 (2004).
13 E. Quintana, C. Valls, A. G. Barneto, T. Vidal, J. Ariza, and M. B. Roncero. Studying
the effects of laccase treatment in a softwood dissolving pulp: Cellulose reactivity
and crystallinity.Carbohydrate Polymers, 119 , 2015, 53–61 (2015).
14 D. Klemm, B. Heublein, and A. Bohn. Cellulose: Fascinating biopolymer and
sustainable raw material.Angewandte Chemie, 44 , 22, 3358–3393 (2005).
15 M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona. Chemical treatments on
plant-based natural fiber reinforced polymer composites: An overview.Composites
Part B: Engineering, 43 , 7, 2883–2892 (2012).
16 C. Tian, L. Zheng, Q. Miao, C. Cao, and Y. Ni. Improving the reactivity of
kraft-based dissolving pulp for viscose rayon production by mechanical treatments.
Cellulose, 21 , 5, 3647–3654 (2014).
17 F. M. Gama, J. A. Teixeira, and M. Mota. Cellulose morphology and enzymatic
reactivity: A modified solute exclusion technique.Biotechnology and Bioengineering,
43 , 5, 381–387 (1994).
18 A.-C. Engstrom, M. Ek, and G. Henriksson. Improved accessibility and reactivity
of dissolving pulp for the viscose process: Pretreatment with monocomponent
endoglucanase.Biomacromolecules, 7 , 6, 2027–2031 (2006).
19 E.S.Welf,R.A.Venditti,M.A.Hubbe,andJ.Pawlak.Theeffectsofheatingwithout
water removal and drying on the swelling as measured by water retention value
and degradation as measured by intrinsic viscosity of cellulose papermaking fibers.
Progress in Paper Recycling, 14 , 3, 1–9 (2005).
20 U. Weise, T. Maloney, and H. Paulapuro. Quantification of water in different states
of interaction with wood pulp fibers.Cellulose, 3 , 1, 189–202 (1996).
21 H.Sixta,M.Iakovlev,L.Testova,A.Roselli,M.Hummel,M.Borrega,A.
van-Heiningen, C. Froschauer, and H. Schottenberger. Novel concepts of dissolving
pulp production.Cellulose, 20 , 4, 1547–1561 (2013).
22 H. Wang, B. Pang, K. Wu, F. Kong, B. Li, and X. Mu. Two stages of treatments
for upgrading bleached softwood paper grade pulp to dissolving pulp for viscose
production.Biochemical Engineering Journal, 82 , 183–187 (2014).
23 L. Testova, M. Borrega, L. K. Tolonen, P. A. Penttila, R. Serimaa, P. T. Larsson,
and H. Sixta. Dissolving-grade birch pulps produced under various prehydrolysis
intensities: quality, structure and applications.Cellulose, 21 , 3, 2007–2021 (2014).
24 D. Ibarra, V. Kopcke, P. T. Larsson, A.-S. Jaaskelainen, and M. Ek. Combination of
alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp
to dissolving-grade pulp.Bioresource Technology, 101 , 19, 7416–7423 (2010).
25 J Shen, Z. Song, X. Qian, and W. Liu. Modification of papermaking grade fillers:
Abriefreview.BioResources, 4 , 3, 1190–1209 (2009).
Free download pdf