280
Collavin L, Kirschner MW (2003) The secreted Frizzled-related protein Sizzled functions as a
negative feedback regulator of extreme ventral mesoderm. Development 130:805–816
Colozza G, De Robertis EM (2014) Maternal syntabulin is required for dorsal axis formation and
is a germ plasm component in Xenopus. Differentiation 88:17–26. doi:10.1016/j.
diff.2014.03.002
Conlon FL, Lyons KM, Takaesu N et al (1994) A primary requirement for nodal in the formation
and maintenance of the primitive streak in the mouse. Development 120:1919–1928
Connolly DJ, Patel K, Cooke J (1997) Chick noggin is expressed in the organizer and neural plate
during axial development, but offers no evidence of involvement in primary axis formation. Int
J Dev Biol 41:389–396
Cook D, Fry MJ, Hughes K et al (1996) Wingless inactivates glycogen synthase kinase-3 via an
intracellular signalling pathway which involves a protein kinase C. EMBO J 15:4526–4536
Cooke J, Smith JC (1987) The midblastula cell cycle transition and the character of mesoderm in
UV-induced nonaxial Xenopus development. Development 99:197–210
Cooper MS, D'Amico LA (1996) A cluster of noninvoluting endocytic cells at the margin of the
zebrafish blastoderm marks the site of embryonic shield formation. Dev Biol 180:184–198.
doi:10.1006/dbio.1996.0294
Coudreuse DYM (2006) Wnt gradient formation requires retromer function in Wnt-producing
cells. Science 312:921–924. doi:10.1126/science.1124856
Cruciat C-M, Niehrs C (2013) Secreted and transmembrane wnt inhibitors and activators. Cold
Spring Harb Perspect Biol 5:a015081. doi:10.1101/cshperspect.a015081
Csardi G, Nepusz T (2014) igraph: Network analysis and visualization. R package version 0.7
Cselenyi CS, Jernigan KK, Tahinci E et al (2008) LRP6 transduces a canonical Wnt signal inde-
pendently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin. Proc
Natl Acad Sci U S A 105:8032–8037. doi:10.1073/pnas.0803025105
Cui Y, Tian Q, Christian JL (1996) Synergistic effects of Vg1 and Wnt signals in the specification
of dorsal mesoderm and endoderm. Dev Biol 180:22–34. doi:10.1006/dbio.1996.0281
Curtin JA, Quint E, Tsipouri V et al (2003) Mutation of Celsr1 disrupts planar polarity of inner ear
hair cells and causes severe neural tube defects in the mouse. Curr Biol 13:1129–1133
Cuykendall TN, Houston DW (2009) Vegetally localized Xenopus trim36 regulates cortical rota-
tion and dorsal axis formation. Development 136:3057–3065. doi:10.1242/dev.036855
Dalcq A, Pasteels J (1937) Une conception nouvelle des bases physiologiques de la morphogénèse.
Arch Biol (Liege) 48:699–710
Dale L, Howes G, Price B, Smith J (1992) Bone morphogenetic protein 4: a ventralizing factor in
early Xenopus development. Development 115:573–585
Dale L, Smith JC, Slack JM (1985) Mesoderm induction in Xenopus laevis: a quantitative study
using a cell lineage label and tissue-specific antibodies. J Embryol Exp Morphol 89:289–312
Dalle Nogare D, Somers K, Rao S et al (2014) Leading and trailing cells cooperate in collective
migration of the zebrafish posterior lateral line primordium. Development 141:3188–3196.
doi:10.1242/dev.106690
Darken R, Scola A, Rakeman A et al (2002) The planar polarity gene strabismus regulates conver-
gent extension movements in Xenopus. EMBO J 21:976–985
Darras S, Marikawa Y, Elinson RP, Lemaire P (1997) Animal and vegetal pole cells of early
Xenopus embryos respond differently to maternal dorsal determinants: implications for the
patterning of the organiser. Development 124:4275–4286
Davidson G, Shen J, Huang Y-L et al (2009) Cell cycle control of wnt receptor activation. Dev Cell
17:788–799. doi:10.1016/j.devcel.2009.11.006
Davidson G, Wu W, Shen J et al (2005) Casein kinase 1 gamma couples Wnt receptor activation to
cytoplasmic signal transduction. Nature 438:867–872. doi:10.1038/nature04170
De Robertis E, Larrain J, Oelgeschlager M, Wessely O (2000) The establishment of Spemann’s
organizer and patterning of the vertebrate embryo. Nat Rev Genet 1:171–181
De Robertis EM (2009) Spemann’s organizer and the self-regulation of embryonic fields. Mech
Dev 126:925–941. doi:10.1016/j.mod.2009.08.004
D.W. Houston