Vertebrate Development Maternal to Zygotic Control (Advances in Experimental Medicine and Biology)

(nextflipdebug2) #1

284


Gros J, Feistel K, Viebahn C et al (2009) Cell movements at Hensen’s node establish left/right
asymmetric gene expression in the chick. Science 324:941–944. doi:10.1126/science.1172478
Gross JC, Chaudhary V, Bartscherer K, Boutros M (2012) Active Wnt proteins are secreted on
exosomes. Nat Cell Biol 14:1036–1045. doi:10.1038/ncb2574
Grunz H (2004) The vertebrate organizer. Springer Science & Business Media, Berlin
Grunz H, Tacke L (1989) Neural differentiation of Xenopus laevis ectoderm takes place after dis-
aggregation and delayed reaggregation without inducer. Cell Differ Dev 28:211–217
Grunz H, Tacke L (1990) Extracellular matrix components prevent neural differentiation of disag-
gregated Xenopus ectoderm cells. Cell Differ Dev 32:117–123
Guger KA, Gumbiner BM (1995) beta-Catenin has Wnt-like activity and mimics the Nieuwkoop
signaling center in Xenopus dorsal-ventral patterning. Dev Biol 172:115–125. doi:10.1006/
dbio.1995.0009
Habas R, Dawid IB, He X (2003) Coactivation of Rac and Rho by Wnt/Frizzled signaling is
required for vertebrate gastrulation. Genes Dev 17:295–309. doi:10.1101/gad.1022203
Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and
requires a novel Formin homology protein Daam1. Cell 107:843–854
Haegel H, Larue L, Ohsugi M et al (1995) Lack of beta-catenin affects mouse development at
gastrulation. Development 121:3529–3537
Hainski AM, Moody SA (1992) Xenopus maternal RNAs from a dorsal animal blastomere induce
a secondary axis in host embryos. Development 116:347–355
Halacheva V, Fuchs M, Dönitz J et al (2011) Planar cell movements and oriented cell division
during early primitive streak formation in the mammalian embryo. Dev Dyn 240:1905–1916.
doi:10.1002/dvdy.22687
Hamburger V (1988) The heritage of experimental embryology: Hans Spemann and the organizer.
Oxford University Press, USA
Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick
embryo. J Morphol 88:231–272. doi:10.1002/aja.1001950404
Hamilton FS, Wheeler GN, Hoppler S (2001) Difference in XTcf-3 dependency accounts for
change in response to beta-catenin-mediated Wnt signalling in Xenopus blastula. Development
128:2063–2073
Hammerschmidt M, Pelegri F, Mullins MC et al (1996a) Mutations affecting morphogenesis dur-
ing gastrulation and tail formation in the zebrafish, Danio rerio. Development 123:143–151
Hammerschmidt M, Serbedzija GN, McMahon AP (1996b) Genetic analysis of dorsoventral pat-
tern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal
repressor. Genes Dev 10:2452–2461. doi:10.1101/gad.10.19.2452
Hansen C, Marion C, Steele K et al (1997) Direct neural induction and selective inhibition of
mesoderm and epidermis inducers by Xnr3. Development 124:483–492
Harland R (2008) Induction into the Hall of Fame: tracing the lineage of Spemann’s organizer.
Development 135:3321–3323
Harland R, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Cell Dev
Biol 13:611–667
Harland RM (1994) Neural induction in Xenopus. Curr Opin Genet Dev 4:543–549
Harland RM, Grainger RM (2011) Xenopus research: metamorphosed by genetics and genomics.
Trends Genet 27:507–515. doi:10.1016/j.tig.2011.08.003
Hartley KO, Hardcastle Z, Friday RV et al (2001) Transgenic Xenopus embryos reveal that anterior
neural development requires continued suppression of BMP signaling after gastrulation. Dev
Biol 238:168–184. doi:10.1006/dbio.2001.0398
Hashiguchi M, Mullins MC (2013) Anteroposterior and dorsoventral patterning are coordinated by
an identical patterning clock. Development 140:1970–1980. doi:10.1242/dev.088104
Hashimoto H, Itoh M, Yamanaka Y, Yamashita S, Shimizu T, Solnica-Krezel L, Hibi M, Hirano T
(2000) Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation.
Dev Biol 217:138–152
Hashimoto M, Shinohara K, Wang J et al (2010) Planar polarization of node cells determines the
rotational axis of node cilia. Nat Cell Biol 12:170–176. doi:10.1038/ncb2020


D.W. Houston

http://www.ebook3000.com

Free download pdf