285
Hausen P, Riebesell M (1991) The early development of Xenopus laevis: an atlas of the histology.
Springer, New York
Hayes M, Naito M, Daulat A et al (2013) Ptk7 promotes non-canonical Wnt/PCP-mediated mor-
phogenesis and inhibits Wnt/β-catenin-dependent cell fate decisions during vertebrate develop-
ment. Development 140(8):1807–1818
He X, Saint-Jeannet JP, Wang Y et al (1997) A member of the Frizzled protein family mediating
axis induction by Wnt-5A. Science 275:1652–1654
He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-
catenin signaling: arrows point the way. Development 131:1663–1677. doi:10.1242/dev.01117
Heasman J (1997) Patterning the Xenopus blastula. Development 124:4179–4191
Heasman J, Crawford A, Goldstone K et al (1994) Overexpression of cadherins and underex-
pression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell
79:791–803
Hedge TA, Mason I (2008) Expression of Shisa2, a modulator of both Wnt and Fgf signaling, in
the chick embryo. Int J Dev Biol 52:81–85. doi:10.1387/ijdb.072355th
Heisenberg CP, Houart C, Take-Uchi M et al (2001) A mutation in the Gsk3-binding domain of
zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to dien-
cephalon. Genes Dev 15:1427–1434. doi:10.1101/gad.194301
Heisenberg CP, Tada M, Rauch GJ et al (2000) Silberblick/Wnt11 mediates convergent extension
movements during zebrafish gastrulation. Nature 405:76–81. doi:10.1038/35011068
Hemmati-Brivanlou A, Kelly O, Melton DA (1994) Follistatin, an antagonist of activin, is
expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77:283–295
Hemmati-Brivanlou A, Melton D (1997) Vertebrate embryonic cells will become nerve cells
unless told otherwise. Cell 88(1):13–17
Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neu-
ralization in Xenopus. Cell 77:273–281
Hernández AR, Klein AM, Kirschner MW (2012) Kinetic responses of β-catenin specify the sites
of Wnt control. Science 338:1337–1340. doi:10.1126/science.1228734
Hesiod, Evelyn-White HG (1914) Works and days. The Homeric Hymns and Homerica 174–ff
Hikasa H, Ezan J, Itoh K et al (2010) Regulation of TCF3 by Wnt-dependent phosphorylation
during vertebrate axis specification. Dev Cell 19:521–532. doi:10.1016/j.devcel.2010.09.005
Hikasa H, Sokol SY (2013) Wnt signaling in vertebrate axis specification. Cold Spring Harb
Perspect Biol 5:a007955. doi:10.1101/cshperspect.a007955
Hild M, Dick A, Rauch GJ et al (1999) The smad5 mutation somitabun blocks Bmp2b signaling
during early dorsoventral patterning of the zebrafish embryo. Development 126:2149–2159
Hillman N, Sherman MI, Graham C (1972) The effect of spatial arrangement on cell determination
during mouse development. J Embryol Exp Morphol 28:263–278
Hilton E, Rex M, Old R (2003) VegT activation of the early zygotic gene Xnr5 requires lifting of
Tcf-mediated repression in the Xenopus blastula. Mech Dev 120:1127–1138
Ho C-Y, Houart C, Wilson SW, Stainier DYR (1999) A role for the extraembryonic yolk syncytial
layer in patterning the zebrafish embryo suggested by properties of the hex gene. Curr Biol
9:1131–1134. doi:10.1016/S0960-9822(99)80485-0
Ho RK (1992) Cell movements and cell fate during zebrafish gastrulation. Dev Suppl 65–73
Hoffmans R, Städeli R, Basler K (2005) Pygopus and legless provide essential transcriptional
coactivator functions to armadillo/beta-catenin. Curr Biol 15:1207–1211. doi:10.1016/j.
cub.2005.05.054
Hofmann K (2000) A superfamily of membrane-bound O-acyltransferases with implications for
wnt signaling. Trends Biochem Sci 25:111–112
Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate develop-
ment. Genes Dev 10:1580–1594
Holland LZ, Onai T (2012) Early development of cephalochordates (amphioxus). WIREs Dev Biol
1:167–183. doi:10.1002/wdev.11
Holowacz T, Elinson RP (1993) Cortical cytoplasm, which induces dorsal axis formation in
Xenopus, is inactivated by UV irradiation of the oocyte. Development 119:277–285
6 Vertebrate Axial Patterning: From Egg to Asymmetry