Vertebrate Development Maternal to Zygotic Control (Advances in Experimental Medicine and Biology)

(nextflipdebug2) #1
295

Oppenheimer JM (1934a) Experimental studies on the developing perch (Perca flavescens
Mitchill). Exp Biol Med 31:1123–1124. doi:10.3181/00379727-31-7465P
Oppenheimer JM (1934b) Experiments on early developing stages of fundulus. Proc Natl Acad
Sci U S A 20:536–538
Osada SI, Saijoh Y, Frisch A et al (2000) Activin/nodal responsiveness and asymmetric expres-
sion of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1.
Development 127:2503–2514
Ozair MZ, Kintner C, Brivanlou AH (2012) Neural induction and early patterning in vertebrates.
WIREs Dev Biol 2:479–498. doi:10.1002/wdev.90
Panáková D, Sprong H, Marois E et al (2005) Lipoprotein particles are required for Hedgehog and
Wingless signalling. Nature 435:58–65. doi:10.1038/nature03504
Papanayotou C, Benhaddou A, Camus A et al (2014) A novel nodal enhancer dependent on pluri-
potency factors and smad2/3 signaling conditions a regulatory switch during epiblast matura-
tion. PLoS Biol 12:e1001890. doi:10.1371/journal.pbio.1001890
Papkoff J, Brown A, Varmus H (1987) The int-1 proto-oncogene products are glycoproteins that
appear to enter the secretory pathway. Mol Cell Biol 7:3978–3984
Parameswaran M, Tam P (1995) Regionalisation of cell fate and morphogenetic movement of the
mesoderm during mouse gastrulation. Dev Genet 17:16–28
Parfitt D-E, Zernicka-Goetz M (2010) Epigenetic modification affecting expression of cell polarity
and cell fate genes to regulate lineage specification in the early mouse embryo. Mol Biol Cell
21:2649–2660. doi:10.1091/mbc.E10-01-0053
Parker D, Jemison J, Cadigan K (2002) Pygopus, a nuclear PHD-finger protein required for
Wingless signaling in Drosophila. Development 129:2565–2576
Pedersen RA, Wu K, Bałakier H (1986) Origin of the inner cell mass in mouse embryos: cell lin-
eage analysis by microinjection. Dev Biol 117:581–595
Pelegri F, Maischein HM (1998) Function of zebrafish beta-catenin and TCF-3 in dorsoventral
patterning. Mech Dev 77:63–74
Pera EM, Ikeda A, Eivers E, De Robertis EM (2003) Integration of IGF, FGF, and anti-BMP sig-
nals via Smad1 phosphorylation in neural induction. Genes Dev 17:3023–3028. doi:10.1101/
gad.1153603
Peradziryi H, Kaplan NA, Podleschny M et al (2011) PTK7/Otk interacts with Wnts and inhibits
canonical Wnt signalling. EMBO J 30:3729–3740. doi:10.1038/emboj.2011.236
Perea-Gomez A, Lawson KA, Rhinn M et al (2001) Otx2 is required for visceral endoderm
movement and for the restriction of posterior signals in the epiblast of the mouse embryo.
Development 128:753–765
Perea-Gomez A, Vella FDJ, Shawlot W et al (2002) Nodal antagonists in the anterior visceral
endoderm prevent the formation of multiple primitive streaks. Dev Cell 3:745–756
Petersen CP, Reddien PW (2011) Polarized notum activation at wounds inhibits Wnt function
to promote planarian head regeneration. Science 332:852–855. doi:10.1126/science.1202143
Piao S, Lee S-H, Kim H et al (2008) Direct inhibition of GSK3beta by the phosphorylated cyto-
plasmic domain of LRP6 in Wnt/beta-catenin signaling. PLoS One 3:e4046. doi:10.1371/jour-
nal.pone.0004046
Piccolo S, Agius E, Leyns L et al (1999) The head inducer Cerberus is a multifunctional antagonist
of Nodal, BMP and Wnt signals. Nature 397:707–710. doi:10.1038/17820
Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition
of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598
Piepenburg O, Grimmer D, Williams PH, Smith JC (2004) Activin redux: specification of meso-
dermal pattern in Xenopus by graded concentrations of endogenous activin B. Development
131:4977–4986. doi:10.1242/dev.01323
Pinho S, Simonsson PR, Trevers KE et al (2011) Distinct steps of neural induction revealed by
Asterix, Obelix and TrkC, genes induced by different signals from the organizer. PLoS One
6:e19157. doi:10.1371/journal.pone.0019157


6 Vertebrate Axial Patterning: From Egg to Asymmetry

Free download pdf