Vertebrate Development Maternal to Zygotic Control (Advances in Experimental Medicine and Biology)

(nextflipdebug2) #1
297

Roux W (1903) Über die Ursachen der Bestimmung der Hauptrichtungen des Embryo im Froschei.
Anat Anz 23:65–183
Rowning BA, Wells J, Wu M et al (1997) Microtubule-mediated transport of organelles and local-
ization of beta-catenin to the future dorsal side of Xenopus eggs. Proc Natl Acad Sci U S A
94:1224–1229
Rugh R (1951) The frog, its reproduction and development. The Blakiston Co., Philadelphia, PA
Ruiz i Altaba A, Choi T, Melton DA (1991) Expression of the Xhox3 homeobox protein in
Xenopus embryos: blocking its early function suggests the requirement of Xhox3 for normal
posterior development (axial pattern/central nervous system/embryonic mesoderm/homeobox
gene/Xenopus laevis). Dev Growth Differ 33:651–669. doi:10.1111/j.1440-169X.1991.00651.x
Saint-Jeannet JP, Huang S, Duprat AM (1990) Modulation of neural commitment by changes in
target cell contacts in Pleurodeles waltl. Dev Biol 141:93–103
Sala M (1955) Distribution of activating and transforming influences in the archenteron roof dur-
ing the induction of the nervous system in amphibians. PNAS 58:635–647
Salic AN, Kroll KL, Evans LM, Kirschner MW (1997) Sizzled: a secreted Xwnt8 antagonist
expressed in the ventral marginal zone of Xenopus embryos. Development 124:4739–4748
Sampath K, Rubinstein AL, Cheng AM et al (1998) Induction of the zebrafish ventral brain and
floorplate requires cyclops/nodal signalling. Nature 395:185–189. doi:10.1038/26020
Sander V, Reversade B, De Robertis EM (2007) The opposing homeobox genes Goosecoid
and Vent1/2 self-regulate Xenopus patterning. EMBO J 26:2955–2965. doi:10.1038/
sj.emboj.7601705
Saneyoshi T, Kume S, Amasaki Y, Mikoshiba K (2002) The Wnt/calcium pathway activates NF-AT
and promotes ventral cell fate in Xenopus embryos. Nature 417:295–299. doi:10.1038/417295a
Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and
Bmp-4 antagonistic patterning signals in Xenopus. Nature 376:333–336. doi:10.1038/376333a0
Sasai Y, Lu B, Steinbeisser H et al (1994) Xenopus chordin: a novel dorsalizing factor activated by
organizer-specific homeobox genes. Cell 79:779–790
Scerbo P, Girardot F, Vivien C et al (2012) Ventx factors function as nanog-like guardians of devel-
opmental potential in Xenopus. PLoS One 7:e36855. doi:10.1371/journal.pone.0036855.s008
Scerbo P, Markov GV, Vivien C et al (2014) On the origin and evolutionary history of NANOG. PLoS
One 9:e85104. doi:10.1371/journal.pone.0085104
Schambony A, Wedlich D (2007) Wnt-5A/Ror2 regulate expression of XPAPC through an alternative
noncanonical signaling pathway. Dev Cell 12:779–792. doi:10.1016/j.devcel.2007.02.016
Scharf SR, Gerhart JC (1983) Axis determination in eggs of Xenopus laevis: a critical period
before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradia-
tion. Dev Biol 99:75–87
Scharf SR, Gerhart JC (1980) Determination of the dorsal-ventral axis in eggs of Xenopus laevis:
complete rescue of uv-impaired eggs by oblique orientation before first cleavage. Dev Biol
79:181–198
Scharf SR, Rowning B, Wu M, Gerhart JC (1989) Hyperdorsoanterior embryos from Xenopus
eggs treated with D 2 O. Dev Biol 134:175–188
Schmid B, Fürthauer M, Connors SA et al (2000) Equivalent genetic roles for bmp7/snailhouse
and bmp2b/swirl in dorsoventral pattern formation. Development 127:957–967
Schmidt JE, von Dassow G, Kimelman D (1996) Regulation of dorsal-ventral patterning: the ven-
tralizing effects of the novel Xenopus homeobox gene Vox. Development 122:1711–1721
Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) Beta-catenin translocation into nuclei
demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57:191–198
Schohl A, Fagotto F (2002) Beta-catenin, MAPK and Smad signaling during early Xenopus devel-
opment. Development 129:37–52
Schroeder KE, Condic ML, Eisenberg LM, Yost HJ (1999) Spatially regulated translation in
embryos: asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus.
Dev Biol 214:288–297. doi:10.1006/dbio.1999.9426
Schroeder MM, Gard DL (1992) Organization and regulation of cortical microtubules during the
first cell cycle of Xenopus eggs. Development 114:699–709


6 Vertebrate Axial Patterning: From Egg to Asymmetry

Free download pdf